Richard J. Norby, Neil J. Loader, Carolina Mayoral, Sami Ullah, Giulio Curioni, Andy R. Smith, Michaela K. Reay, Klaske van Wijngaarden, Muhammad Shoaib Amjad, Deanne Brettle, Martha E. Crockatt, Gael Denny, Robert T. Grzesik, R. Liz Hamilton, Kris M. Hart, Iain P. Hartley, Alan G. Jones, Angeliki Kourmouli, Joshua R. Larsen, Zongbo Shi, Rick M. Thomas, A. Robert MacKenzie
{"title":"Enhanced woody biomass production in a mature temperate forest under elevated CO2","authors":"Richard J. Norby, Neil J. Loader, Carolina Mayoral, Sami Ullah, Giulio Curioni, Andy R. Smith, Michaela K. Reay, Klaske van Wijngaarden, Muhammad Shoaib Amjad, Deanne Brettle, Martha E. Crockatt, Gael Denny, Robert T. Grzesik, R. Liz Hamilton, Kris M. Hart, Iain P. Hartley, Alan G. Jones, Angeliki Kourmouli, Joshua R. Larsen, Zongbo Shi, Rick M. Thomas, A. Robert MacKenzie","doi":"10.1038/s41558-024-02090-3","DOIUrl":null,"url":null,"abstract":"Enhanced CO2 assimilation by forests as atmospheric CO2 concentration rises could slow the rate of CO2 increase if the assimilated carbon is allocated to long-lived biomass. Experiments in young tree plantations support a CO2 fertilization effect as atmospheric CO2 continues to increase. Uncertainty exists, however, as to whether older, more mature forests retain the capacity to respond to elevated CO2. Here, aided by tree-ring analysis and canopy laser scanning, we show that a 180-year-old Quercus robur L. woodland in central England increased the production of woody biomass when exposed to free-air CO2 enrichment (FACE) for 7 years. Further, elevated CO2 increased exudation of carbon from fine roots into the soil with likely effects on nutrient cycles. The increase in tree growth and allocation to long-lived woody biomass demonstrated here substantiates the major role for mature temperate forests in climate change mitigation. While experiments in younger trees support increased production under higher CO2, it is unclear whether more mature trees can respond similarly. Here, the authors show increased production of biomass in a 180-year-old Quercus robur L. woodland under 7 years of free-air CO2 enrichment (FACE).","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"14 9","pages":"983-988"},"PeriodicalIF":29.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41558-024-02090-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Climate Change","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41558-024-02090-3","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Enhanced CO2 assimilation by forests as atmospheric CO2 concentration rises could slow the rate of CO2 increase if the assimilated carbon is allocated to long-lived biomass. Experiments in young tree plantations support a CO2 fertilization effect as atmospheric CO2 continues to increase. Uncertainty exists, however, as to whether older, more mature forests retain the capacity to respond to elevated CO2. Here, aided by tree-ring analysis and canopy laser scanning, we show that a 180-year-old Quercus robur L. woodland in central England increased the production of woody biomass when exposed to free-air CO2 enrichment (FACE) for 7 years. Further, elevated CO2 increased exudation of carbon from fine roots into the soil with likely effects on nutrient cycles. The increase in tree growth and allocation to long-lived woody biomass demonstrated here substantiates the major role for mature temperate forests in climate change mitigation. While experiments in younger trees support increased production under higher CO2, it is unclear whether more mature trees can respond similarly. Here, the authors show increased production of biomass in a 180-year-old Quercus robur L. woodland under 7 years of free-air CO2 enrichment (FACE).
期刊介绍:
Nature Climate Change is dedicated to addressing the scientific challenge of understanding Earth's changing climate and its societal implications. As a monthly journal, it publishes significant and cutting-edge research on the nature, causes, and impacts of global climate change, as well as its implications for the economy, policy, and the world at large.
The journal publishes original research spanning the natural and social sciences, synthesizing interdisciplinary research to provide a comprehensive understanding of climate change. It upholds the high standards set by all Nature-branded journals, ensuring top-tier original research through a fair and rigorous review process, broad readership access, high standards of copy editing and production, rapid publication, and independence from academic societies and other vested interests.
Nature Climate Change serves as a platform for discussion among experts, publishing opinion, analysis, and review articles. It also features Research Highlights to highlight important developments in the field and original reporting from renowned science journalists in the form of feature articles.
Topics covered in the journal include adaptation, atmospheric science, ecology, economics, energy, impacts and vulnerability, mitigation, oceanography, policy, sociology, and sustainability, among others.