Challenges and opportunities in truck electrification revealed by big operational data

IF 49.7 1区 材料科学 Q1 ENERGY & FUELS Nature Energy Pub Date : 2024-08-12 DOI:10.1038/s41560-024-01602-x
Pei Zhao, Shaojun Zhang, Paolo Santi, Dingsong Cui, Fang Wang, Peng Liu, Zhaosheng Zhang, Jin Liu, Zhenpo Wang, Carlo Ratti, Ye Wu
{"title":"Challenges and opportunities in truck electrification revealed by big operational data","authors":"Pei Zhao, Shaojun Zhang, Paolo Santi, Dingsong Cui, Fang Wang, Peng Liu, Zhaosheng Zhang, Jin Liu, Zhenpo Wang, Carlo Ratti, Ye Wu","doi":"10.1038/s41560-024-01602-x","DOIUrl":null,"url":null,"abstract":"<p>The electrification of trucks is a major challenge in achieving zero-emission transportation. Here we gathered year-long records from 61,598 electric trucks in China. Current electric trucks were found to be significantly underutilized compared with their diesel counterparts. Twenty-three per cent of electric delivery trucks and 30% of semi-trailers could achieve one-on-one replacement with diesel counterparts, while on average 3.8 electric delivery trucks and 3.6 electric semi-trailers are required to match the transportation demand that is served by one diesel truck separately. For diesel trucks that are capable of one-on-one replacement, electric trucks have 15–54% and 1–49% reductions in cost and life-cycle CO<sub>2</sub> emissions, respectively. Enhancements in usage patterns, vehicle technologies and charging infrastructure can improve electrification feasibility, yielding cost and decarbonization benefits. Increased battery energy densities with optimized usage can make one-on-one electrification feasible for more than 85% of diesel semi-trailers. In addition, with cleaner electricity, most Chinese electric trucks in 2030 will have lower expected life-cycle CO<sub>2</sub> emissions than diesel trucks.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":null,"pages":null},"PeriodicalIF":49.7000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41560-024-01602-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The electrification of trucks is a major challenge in achieving zero-emission transportation. Here we gathered year-long records from 61,598 electric trucks in China. Current electric trucks were found to be significantly underutilized compared with their diesel counterparts. Twenty-three per cent of electric delivery trucks and 30% of semi-trailers could achieve one-on-one replacement with diesel counterparts, while on average 3.8 electric delivery trucks and 3.6 electric semi-trailers are required to match the transportation demand that is served by one diesel truck separately. For diesel trucks that are capable of one-on-one replacement, electric trucks have 15–54% and 1–49% reductions in cost and life-cycle CO2 emissions, respectively. Enhancements in usage patterns, vehicle technologies and charging infrastructure can improve electrification feasibility, yielding cost and decarbonization benefits. Increased battery energy densities with optimized usage can make one-on-one electrification feasible for more than 85% of diesel semi-trailers. In addition, with cleaner electricity, most Chinese electric trucks in 2030 will have lower expected life-cycle CO2 emissions than diesel trucks.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
运营大数据揭示卡车电气化的挑战与机遇
卡车电气化是实现零排放运输的一大挑战。在此,我们收集了中国 61598 辆电动卡车的全年记录。与柴油卡车相比,目前电动卡车的使用率明显偏低。23%的电动运货卡车和 30% 的电动半挂牵引车可以实现与柴油卡车的一对一替代,而平均需要 3.8 辆电动运货卡车和 3.6 辆电动半挂牵引车才能满足单独一辆柴油卡车的运输需求。对于能够一对一替代的柴油卡车,电动卡车的成本和生命周期内的二氧化碳排放量分别降低了 15% 至 54%,以及 1% 至 49%。使用模式、车辆技术和充电基础设施的改进可以提高电气化的可行性,带来成本和脱碳效益。通过优化使用提高电池能量密度,可使 85% 以上的柴油半挂车实现一对一电气化。此外,在使用清洁电力的情况下,2030 年大多数中国电动卡车的预期生命周期二氧化碳排放量将低于柴油卡车。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Energy
Nature Energy Energy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍: Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies. With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector. Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence. In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.
期刊最新文献
Mapping the uncharted interface MOFs, holistically Benchmarking the reproducibility of all-solid-state battery cell performance Refining Native American clean-energy opportunities Inconsistent measurement calls into question progress on electrification in sub-Saharan Africa
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1