Bayesian bivariate Conway–Maxwell–Poisson regression model for correlated count data in sports

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-08-12 DOI:10.1515/jqas-2024-0072
Mauro Florez, Michele Guindani, Marina Vannucci
{"title":"Bayesian bivariate Conway–Maxwell–Poisson regression model for correlated count data in sports","authors":"Mauro Florez, Michele Guindani, Marina Vannucci","doi":"10.1515/jqas-2024-0072","DOIUrl":null,"url":null,"abstract":"\n Count data play a crucial role in sports analytics, providing valuable insights into various aspects of the game. Models that accurately capture the characteristics of count data are essential for making reliable inferences. In this paper, we propose the use of the Conway–Maxwell–Poisson (CMP) model for analyzing count data in sports. The CMP model offers flexibility in modeling data with different levels of dispersion. Here we consider a bivariate CMP model that models the potential correlation between home and away scores by incorporating a random effect specification. We illustrate the advantages of the CMP model through simulations. We then analyze data from baseball and soccer games before, during, and after the COVID-19 pandemic. The performance of our proposed CMP model matches or outperforms standard Poisson and Negative Binomial models, providing a good fit and an accurate estimation of the observed effects in count data with any level of dispersion. The results highlight the robustness and flexibility of the CMP model in analyzing count data in sports, making it a suitable default choice for modeling a diverse range of count data types in sports, where the data dispersion may vary.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jqas-2024-0072","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Count data play a crucial role in sports analytics, providing valuable insights into various aspects of the game. Models that accurately capture the characteristics of count data are essential for making reliable inferences. In this paper, we propose the use of the Conway–Maxwell–Poisson (CMP) model for analyzing count data in sports. The CMP model offers flexibility in modeling data with different levels of dispersion. Here we consider a bivariate CMP model that models the potential correlation between home and away scores by incorporating a random effect specification. We illustrate the advantages of the CMP model through simulations. We then analyze data from baseball and soccer games before, during, and after the COVID-19 pandemic. The performance of our proposed CMP model matches or outperforms standard Poisson and Negative Binomial models, providing a good fit and an accurate estimation of the observed effects in count data with any level of dispersion. The results highlight the robustness and flexibility of the CMP model in analyzing count data in sports, making it a suitable default choice for modeling a diverse range of count data types in sports, where the data dispersion may vary.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
体育运动中相关计数数据的贝叶斯双变量康威-麦克斯韦-泊松回归模型
计数数据在体育分析中起着至关重要的作用,它为了解比赛的各个方面提供了宝贵的信息。能准确捕捉计数数据特征的模型对于做出可靠的推断至关重要。在本文中,我们建议使用康威-麦克斯韦-泊松(CMP)模型来分析体育运动中的计数数据。CMP 模型可以灵活地对具有不同离散程度的数据进行建模。在这里,我们考虑了一个双变量 CMP 模型,该模型通过纳入随机效应规范,对主客场得分之间的潜在相关性进行建模。我们通过模拟来说明 CMP 模型的优势。然后,我们分析了 COVID-19 大流行之前、期间和之后的棒球和足球比赛数据。我们提出的 CMP 模型的性能与标准泊松模型和负二项模型不相上下,甚至优于它们,在任何离散程度的计数数据中都能很好地拟合并准确估计观察到的效应。结果凸显了 CMP 模型在分析体育计数数据时的稳健性和灵活性,使其成为对数据离散程度可能不同的各种体育计数数据类型进行建模的合适默认选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Intentions to move abroad among medical students: a cross-sectional study to investigate determinants and opinions. Analysis of Medical Rehabilitation Needs of 2023 Kahramanmaraş Earthquake Victims: Adıyaman Example. Efficacy of whole body vibration on fascicle length and joint angle in children with hemiplegic cerebral palsy. The change process questionnaire (CPQ): A psychometric validation. Prevalence and predictors of hand hygiene compliance in clinical, surgical and intensive care unit wards: results of a second cross-sectional study at the Umberto I teaching hospital of Rome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1