Analysing cosmic ray density distribution using variable separable method in diverse spatial domains

IF 1.7 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Indian Journal of Physics Pub Date : 2024-08-10 DOI:10.1007/s12648-024-03380-4
Ratnakaram Raghavendra, Saila Kumari Anna Reddy
{"title":"Analysing cosmic ray density distribution using variable separable method in diverse spatial domains","authors":"Ratnakaram Raghavendra,&nbsp;Saila Kumari Anna Reddy","doi":"10.1007/s12648-024-03380-4","DOIUrl":null,"url":null,"abstract":"<div><p>This study employs the variable separable method to investigate the intricate dynamics of cosmic ray density distribution across diverse spatial domains. The exploration spans cylindrical, spherical, and Cartesian coordinates, delving into the effects of diffusion and velocity on cosmic ray propagation. The focal point is the evolution of cosmic ray density over time, scrutinizing the influence of parameters like diffusion coefficient, velocity, and eigenvalue. The simulations unveil compelling insights into the spatial and temporal behaviour of cosmic rays, yielding patterns that transcend coordinate systems. In the cylindrical region, the initial density distribution undergoes radial decay as cosmic rays disperse with time. In spherical coordinates, the simulation elucidates radial and angular patterns, revealing anisotropic behaviours that depend on the eigenvalue and velocity. Cartesian coordinates unfold a similar narrative, with radial decay along each axis and anisotropic tendencies along different directions. The outcomes of these simulations contribute substantively to our understanding of cosmic ray behaviour. The diffusion-driven homogenization effect becomes apparent as density gradients diminish, underscoring the integral role of diffusion in cosmic ray dynamics. By studying cosmic ray propagation in various spatial settings, this work not only elucidates fundamental principles but also lays a foundation for astrophysical applications. In essence, this research underscores the potency of the variable separable method in unravelling intricate phenomena, enabling a comprehensive exploration of cosmic ray behaviour in different environments. The insights gained from these simulations pave the way for deeper investigations into high-energy astrophysical processes and contribute to the broader understanding of cosmic ray interactions.</p></div>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"99 4","pages":"1241 - 1250"},"PeriodicalIF":1.7000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s12648-024-03380-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study employs the variable separable method to investigate the intricate dynamics of cosmic ray density distribution across diverse spatial domains. The exploration spans cylindrical, spherical, and Cartesian coordinates, delving into the effects of diffusion and velocity on cosmic ray propagation. The focal point is the evolution of cosmic ray density over time, scrutinizing the influence of parameters like diffusion coefficient, velocity, and eigenvalue. The simulations unveil compelling insights into the spatial and temporal behaviour of cosmic rays, yielding patterns that transcend coordinate systems. In the cylindrical region, the initial density distribution undergoes radial decay as cosmic rays disperse with time. In spherical coordinates, the simulation elucidates radial and angular patterns, revealing anisotropic behaviours that depend on the eigenvalue and velocity. Cartesian coordinates unfold a similar narrative, with radial decay along each axis and anisotropic tendencies along different directions. The outcomes of these simulations contribute substantively to our understanding of cosmic ray behaviour. The diffusion-driven homogenization effect becomes apparent as density gradients diminish, underscoring the integral role of diffusion in cosmic ray dynamics. By studying cosmic ray propagation in various spatial settings, this work not only elucidates fundamental principles but also lays a foundation for astrophysical applications. In essence, this research underscores the potency of the variable separable method in unravelling intricate phenomena, enabling a comprehensive exploration of cosmic ray behaviour in different environments. The insights gained from these simulations pave the way for deeper investigations into high-energy astrophysical processes and contribute to the broader understanding of cosmic ray interactions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用可变分离法分析不同空间领域的宇宙射线密度分布
本研究采用可变可分方法研究宇宙射线密度分布在不同空间域的复杂动态。这次探测跨越了圆柱坐标、球面坐标和笛卡尔坐标,深入研究了扩散和速度对宇宙射线传播的影响。重点是宇宙射线密度随时间的演变,仔细检查扩散系数,速度和特征值等参数的影响。模拟揭示了对宇宙射线时空行为的令人信服的见解,产生了超越坐标系统的模式。在圆柱形区域,随着宇宙射线随时间的分散,初始密度分布发生径向衰减。在球坐标下,模拟阐明了径向和角模式,揭示了依赖于特征值和速度的各向异性行为。笛卡尔坐标展现了类似的叙事,沿每个轴呈径向衰减,沿不同方向呈各向异性趋势。这些模拟的结果对我们理解宇宙射线的行为有很大的帮助。随着密度梯度的减小,扩散驱动的均匀化效应变得明显,强调了扩散在宇宙射线动力学中的整体作用。通过研究宇宙射线在不同空间环境中的传播,不仅阐明了基本原理,而且为天体物理学的应用奠定了基础。从本质上讲,这项研究强调了变量可分方法在揭示复杂现象方面的潜力,从而能够全面探索不同环境下的宇宙射线行为。从这些模拟中获得的见解为更深入地研究高能天体物理过程铺平了道路,并有助于更广泛地理解宇宙射线的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Indian Journal of Physics
Indian Journal of Physics 物理-物理:综合
CiteScore
3.40
自引率
10.00%
发文量
275
审稿时长
3-8 weeks
期刊介绍: Indian Journal of Physics is a monthly research journal in English published by the Indian Association for the Cultivation of Sciences in collaboration with the Indian Physical Society. The journal publishes refereed papers covering current research in Physics in the following category: Astrophysics, Atmospheric and Space physics; Atomic & Molecular Physics; Biophysics; Condensed Matter & Materials Physics; General & Interdisciplinary Physics; Nonlinear dynamics & Complex Systems; Nuclear Physics; Optics and Spectroscopy; Particle Physics; Plasma Physics; Relativity & Cosmology; Statistical Physics.
期刊最新文献
Unveiling soliton dynamics in the unstable nonlinear schrödinger equation through computational and analytical exploration A spectroscopic investigations of Ho3+ doped CaO-Na2O-Al2O3-B2O3 glass for green lighting and eye-safe lasers applications Numerical investigation of space-time fractional shallow water waves associated with tsunami wave Study of thermal, structural and lasing properties of Sm3+ doped different lithium borate glasses for photonic device applications Advanced fractional modeling of diabetes: bifurcation analysis, chaos control, and a comparative study of numerical methods adams-bashforth-moulton and laplace-adomian-padé method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1