D. B. Gogol, A. M. Makasheva, D. T. Sadyrbekov, L. F. Dyussembayeva, I. E. Rozhkovoy, I. I. Ishmiev, O. I. Zemskiy, S. K. Aldabergenova
{"title":"Evaluation of Solubility and Thermodynamic Properties of Synthetic Nickel Hydroxide Carbonate","authors":"D. B. Gogol, A. M. Makasheva, D. T. Sadyrbekov, L. F. Dyussembayeva, I. E. Rozhkovoy, I. I. Ishmiev, O. I. Zemskiy, S. K. Aldabergenova","doi":"10.1007/s10953-024-01406-3","DOIUrl":null,"url":null,"abstract":"<div><p>Knowledge of the values of the thermodynamic functions of natural minerals of transition elements has important applications in the study of the processes of their formation and geochemical migration with groundwater; when developing methods to prevent corrosion of non-ferrous alloys in fresh and sea water; when immobilizing heavy metals in mine drainage and industrial waters, etc. Also, these values are in demand when calculating reactions and developing methods for producing synthetic analogs of minerals, many of which exhibit magnetic, catalytic, photochemical, and other properties. However, in scientific literature, there is a lack of detailed data on the thermodynamic properties of nickel hydroxysalts. A sample of basic nickel carbonate with the theoretical formula Ni<sub>3</sub>[CO<sub>3</sub>](OH)<sub>4</sub>·3H<sub>2</sub>O was obtained using the hydrothermal synthesis method. The structure of the compound was verified by X-ray diffraction and infrared spectroscopy. Experiments were carried out on sample dissolution in order to measure the solubility constant (solubility product): log<sub>10 </sub><i>K</i><sub>SP</sub> = − 45.8 ± 1.8. Based on the data obtained, the thermodynamic parameters of the reaction of dissolution of the compound were determined and the main thermodynamic functions were determined: Gibbs free energy of formation Δ<sub>f</sub><i>G</i>° = − 1554 ± 6 kJ·mol<sup>−1</sup>; enthalpy of formation Δ<sub>f</sub><i>H</i>° = − 1798 ± 9 kJ·mol<sup>−1</sup>; standard entropy <i>S</i>° = 260.6 ± 7.8 J·mol<sup>−1</sup>·K<sup>−1</sup>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10953-024-01406-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Knowledge of the values of the thermodynamic functions of natural minerals of transition elements has important applications in the study of the processes of their formation and geochemical migration with groundwater; when developing methods to prevent corrosion of non-ferrous alloys in fresh and sea water; when immobilizing heavy metals in mine drainage and industrial waters, etc. Also, these values are in demand when calculating reactions and developing methods for producing synthetic analogs of minerals, many of which exhibit magnetic, catalytic, photochemical, and other properties. However, in scientific literature, there is a lack of detailed data on the thermodynamic properties of nickel hydroxysalts. A sample of basic nickel carbonate with the theoretical formula Ni3[CO3](OH)4·3H2O was obtained using the hydrothermal synthesis method. The structure of the compound was verified by X-ray diffraction and infrared spectroscopy. Experiments were carried out on sample dissolution in order to measure the solubility constant (solubility product): log10 KSP = − 45.8 ± 1.8. Based on the data obtained, the thermodynamic parameters of the reaction of dissolution of the compound were determined and the main thermodynamic functions were determined: Gibbs free energy of formation ΔfG° = − 1554 ± 6 kJ·mol−1; enthalpy of formation ΔfH° = − 1798 ± 9 kJ·mol−1; standard entropy S° = 260.6 ± 7.8 J·mol−1·K−1.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.