Readiness of Malaysian PV System to Utilize Energy Storage System with Second-Life Electric Vehicle Batteries

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-08-09 DOI:10.3390/en17163953
Md. Tanjil Sarker, Mohammed Hussein Saleh Mohammed Haram, Siow Jat Shern, Gobbi Ramasamy, Fahmid Al Farid
{"title":"Readiness of Malaysian PV System to Utilize Energy Storage System with Second-Life Electric Vehicle Batteries","authors":"Md. Tanjil Sarker, Mohammed Hussein Saleh Mohammed Haram, Siow Jat Shern, Gobbi Ramasamy, Fahmid Al Farid","doi":"10.3390/en17163953","DOIUrl":null,"url":null,"abstract":"The potential of renewable energy sources to lower greenhouse gas emissions and lessen our reliance on fossil fuels has accelerated their integration globally, and especially that of solar photovoltaic (PV) systems. Malaysia has shown great progress in the adoption of photovoltaic systems thanks to its plentiful solar resources. On the other hand, energy storage systems (ESSs) are becoming more and more necessary in order to guarantee grid stability and fully realize the benefits of PV systems. This study attempts to assess the current condition of PV installations in Malaysia with an emphasis on their economic feasibility, regulatory compliance, technological capabilities, and compatibility with various energy storage technologies. Malaysian photovoltaic (PV) systems’ readiness to integrate energy storage systems (ESSs) using second-life electric vehicle batteries (SLEVBs) is examined in this article. Integrating PV systems with SLEVBs in residential ESSs shows economic viability, with a 15-year payback and 25% return on investment (ROI). Therefore, for every 1 MW of installed PV capacity, with ESS integration it is estimated to reduce approximately 3504 metric tons of CO2 emissions annually in Malaysia. The homeowner benefits from large electricity bill savings, net metering revenue, and various incentives or financing alternatives that make the project financially attractive despite the extended payback time. Energy storage solutions are needed to improve grid stability, energy usage, and solar power generation in Malaysia as renewable energy adoption increases. Reusing retired EV batteries for stationary storage could solve environmental and economic issues. This study examines the feasibility, regulatory frameworks, and economic viability of combining second-life EV batteries with PV installations in Malaysia.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"13 9","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17163953","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The potential of renewable energy sources to lower greenhouse gas emissions and lessen our reliance on fossil fuels has accelerated their integration globally, and especially that of solar photovoltaic (PV) systems. Malaysia has shown great progress in the adoption of photovoltaic systems thanks to its plentiful solar resources. On the other hand, energy storage systems (ESSs) are becoming more and more necessary in order to guarantee grid stability and fully realize the benefits of PV systems. This study attempts to assess the current condition of PV installations in Malaysia with an emphasis on their economic feasibility, regulatory compliance, technological capabilities, and compatibility with various energy storage technologies. Malaysian photovoltaic (PV) systems’ readiness to integrate energy storage systems (ESSs) using second-life electric vehicle batteries (SLEVBs) is examined in this article. Integrating PV systems with SLEVBs in residential ESSs shows economic viability, with a 15-year payback and 25% return on investment (ROI). Therefore, for every 1 MW of installed PV capacity, with ESS integration it is estimated to reduce approximately 3504 metric tons of CO2 emissions annually in Malaysia. The homeowner benefits from large electricity bill savings, net metering revenue, and various incentives or financing alternatives that make the project financially attractive despite the extended payback time. Energy storage solutions are needed to improve grid stability, energy usage, and solar power generation in Malaysia as renewable energy adoption increases. Reusing retired EV batteries for stationary storage could solve environmental and economic issues. This study examines the feasibility, regulatory frameworks, and economic viability of combining second-life EV batteries with PV installations in Malaysia.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
马来西亚光伏系统利用二次寿命电动汽车电池储能系统的准备情况
可再生能源具有降低温室气体排放和减少对化石燃料依赖的潜力,这加速了它们在全球范围内的融合,尤其是太阳能光伏(PV)系统。得益于丰富的太阳能资源,马来西亚在采用光伏系统方面取得了巨大进步。另一方面,为了保证电网稳定并充分发挥光伏系统的优势,储能系统(ESS)变得越来越必要。本研究试图评估马来西亚光伏发电装置的现状,重点关注其经济可行性、监管合规性、技术能力以及与各种储能技术的兼容性。本文研究了马来西亚光伏(PV)系统整合使用二次寿命电动汽车电池(SLEVB)的储能系统(ESS)的准备情况。在住宅 ESS 中将光伏系统与 SLEVBs 集成显示出经济可行性,投资回收期为 15 年,投资回报率为 25%。因此,在马来西亚,每 1 兆瓦的光伏装机容量与 ESS 集成后,估计每年可减少约 3504 公吨的二氧化碳排放量。尽管投资回收期较长,但业主可从节省的大量电费、净计量收入以及各种激励措施或融资方案中获益,从而使该项目在经济上具有吸引力。随着可再生能源应用的增加,马来西亚需要储能解决方案来改善电网稳定性、能源使用和太阳能发电。将报废的电动汽车电池重新用于固定储能可解决环境和经济问题。本研究探讨了在马来西亚将二次使用的电动汽车电池与光伏装置相结合的可行性、监管框架和经济可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
期刊最新文献
Issue Editorial Masthead Issue Publication Information Celebrating the 90th Birthday of Professor Alan Jay Heeger Bidirectional Magnetization Switching in a Ferrimagnetic Insulator by a Monochiral Cu(II)–Leucine Complex Performance Improvement of the Triboelectric-Electromagnetic Hybrid Generator with a Differential Mechanism by Wind Driving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1