I. Manole, A. Butacu, Raluca Nicoleta Bejan, G. Tiplica
{"title":"Enhancing Dermatological Diagnostics with EfficientNet: A Deep Learning Approach","authors":"I. Manole, A. Butacu, Raluca Nicoleta Bejan, G. Tiplica","doi":"10.3390/bioengineering11080810","DOIUrl":null,"url":null,"abstract":"Background: Despite recent advancements, medical technology has not yet reached its peak. Precision medicine is growing rapidly, thanks to machine learning breakthroughs powered by increased computational capabilities. This article explores a deep learning application for computer-aided diagnosis in dermatology. Methods: Using a custom model based on EfficientNetB3 and deep learning, we propose an approach for skin lesion classification that offers superior results with smaller, cheaper, and faster inference times compared to other models. The skin images dataset used for this research includes 8222 files selected from the authors’ collection and the ISIC 2019 archive, covering six dermatological conditions. Results: The model achieved 95.4% validation accuracy in four categories—melanoma, basal cell carcinoma, benign keratosis-like lesions, and melanocytic nevi—using an average of 1600 images per category. Adding two categories with fewer images (about 700 each)—squamous cell carcinoma and actinic keratoses—reduced the validation accuracy to 88.8%. The model maintained accuracy on new clinical test images taken under the same conditions as the training dataset. Conclusions: The custom model demonstrated excellent performance on the diverse skin lesions dataset, with significant potential for further enhancements.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"6 6","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11080810","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Despite recent advancements, medical technology has not yet reached its peak. Precision medicine is growing rapidly, thanks to machine learning breakthroughs powered by increased computational capabilities. This article explores a deep learning application for computer-aided diagnosis in dermatology. Methods: Using a custom model based on EfficientNetB3 and deep learning, we propose an approach for skin lesion classification that offers superior results with smaller, cheaper, and faster inference times compared to other models. The skin images dataset used for this research includes 8222 files selected from the authors’ collection and the ISIC 2019 archive, covering six dermatological conditions. Results: The model achieved 95.4% validation accuracy in four categories—melanoma, basal cell carcinoma, benign keratosis-like lesions, and melanocytic nevi—using an average of 1600 images per category. Adding two categories with fewer images (about 700 each)—squamous cell carcinoma and actinic keratoses—reduced the validation accuracy to 88.8%. The model maintained accuracy on new clinical test images taken under the same conditions as the training dataset. Conclusions: The custom model demonstrated excellent performance on the diverse skin lesions dataset, with significant potential for further enhancements.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico