Effects of Exercise on the Inter-Session Accuracy of sEMG-Based Hand Gesture Recognition

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL Bioengineering Pub Date : 2024-08-09 DOI:10.3390/bioengineering11080811
Xiangyu Liu, Chenyun Dai, Jionghui Liu, Yangyang Yuan
{"title":"Effects of Exercise on the Inter-Session Accuracy of sEMG-Based Hand Gesture Recognition","authors":"Xiangyu Liu, Chenyun Dai, Jionghui Liu, Yangyang Yuan","doi":"10.3390/bioengineering11080811","DOIUrl":null,"url":null,"abstract":"Surface electromyography (sEMG) is commonly used as an interface in human–machine interaction systems due to their high signal-to-noise ratio and easy acquisition. It can intuitively reflect motion intentions of users, thus is widely applied in gesture recognition systems. However, wearable sEMG-based gesture recognition systems are susceptible to changes in environmental noise, electrode placement, and physiological characteristics. This could result in significant performance degradation of the model in inter-session scenarios, bringing a poor experience to users. Currently, for noise from environmental changes and electrode shifting from wearing variety, numerous studies have proposed various data-augmentation methods and highly generalized networks to improve inter-session gesture recognition accuracy. However, few studies have considered the impact of individual physiological states. In this study, we assumed that user exercise could cause changes in muscle conditions, leading to variations in sEMG features and subsequently affecting the recognition accuracy of model. To verify our hypothesis, we collected sEMG data from 12 participants performing the same gesture tasks before and after exercise, and then used Linear Discriminant Analysis (LDA) for gesture classification. For the non-exercise group, the inter-session accuracy declined only by 2.86%, whereas that of the exercise group decreased by 13.53%. This finding proves that exercise is indeed a critical factor contributing to the decline in inter-session model performance.","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11080811","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Surface electromyography (sEMG) is commonly used as an interface in human–machine interaction systems due to their high signal-to-noise ratio and easy acquisition. It can intuitively reflect motion intentions of users, thus is widely applied in gesture recognition systems. However, wearable sEMG-based gesture recognition systems are susceptible to changes in environmental noise, electrode placement, and physiological characteristics. This could result in significant performance degradation of the model in inter-session scenarios, bringing a poor experience to users. Currently, for noise from environmental changes and electrode shifting from wearing variety, numerous studies have proposed various data-augmentation methods and highly generalized networks to improve inter-session gesture recognition accuracy. However, few studies have considered the impact of individual physiological states. In this study, we assumed that user exercise could cause changes in muscle conditions, leading to variations in sEMG features and subsequently affecting the recognition accuracy of model. To verify our hypothesis, we collected sEMG data from 12 participants performing the same gesture tasks before and after exercise, and then used Linear Discriminant Analysis (LDA) for gesture classification. For the non-exercise group, the inter-session accuracy declined only by 2.86%, whereas that of the exercise group decreased by 13.53%. This finding proves that exercise is indeed a critical factor contributing to the decline in inter-session model performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
运动对基于 sEMG 的手势识别跨期准确性的影响
表面肌电图(sEMG)因其信噪比高、易于采集等特点,通常被用作人机交互系统的界面。它能直观地反映用户的运动意图,因此被广泛应用于手势识别系统。然而,基于 sEMG 的可穿戴手势识别系统容易受到环境噪声、电极位置和生理特征变化的影响。这可能会导致模型在会话间歇时性能大幅下降,给用户带来糟糕的体验。目前,针对环境变化带来的噪声和佩戴种类带来的电极偏移,许多研究提出了各种数据增强方法和高度泛化网络,以提高会话间手势识别的准确性。然而,很少有研究考虑到个体生理状态的影响。在本研究中,我们假设用户运动会导致肌肉状况发生变化,从而引起 sEMG 特征的变化,进而影响模型的识别准确率。为了验证我们的假设,我们收集了 12 名参与者在运动前后执行相同手势任务时的 sEMG 数据,然后使用线性判别分析(LDA)进行手势分类。结果表明,未运动组的准确率在两次运动之间仅下降了 2.86%,而运动组的准确率则下降了 13.53%。这一结果证明,运动的确是导致模型在不同阶段间性能下降的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
期刊最新文献
A Scoping Review of 'Smart' Dressings for Diagnosing Surgical Site Infection: A Focus on Arthroplasty. Characterization of MSC Growth, Differentiation, and EV Production in CNF Hydrogels Under Static and Dynamic Cultures in Hypoxic and Normoxic Conditions. Mamba- and ResNet-Based Dual-Branch Network for Ultrasound Thyroid Nodule Segmentation. Exploring NRB Biofilm Adhesion and Biocorrosion in Oil/Water Recovery Operations Within Pipelines. Wearable Online Freezing of Gait Detection and Cueing System.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1