首页 > 最新文献

Bioengineering最新文献

英文 中文
Clean Self-Supervised MRI Reconstruction from Noisy, Sub-Sampled Training Data with Robust SSDU.
IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-23 DOI: 10.3390/bioengineering11121305
Charles Millard, Mark Chiew

Most existing methods for magnetic resonance imaging (MRI) reconstruction with deep learning use fully supervised training, which assumes that a fully sampled dataset with a high signal-to-noise ratio (SNR) is available for training. In many circumstances, however, such a dataset is highly impractical or even technically infeasible to acquire. Recently, a number of self-supervised methods for MRI reconstruction have been proposed, which use sub-sampled data only. However, the majority of such methods, such as Self-Supervised Learning via Data Undersampling (SSDU), are susceptible to reconstruction errors arising from noise in the measured data. In response, we propose Robust SSDU, which provably recovers clean images from noisy, sub-sampled training data by simultaneously estimating missing k-space samples and denoising the available samples. Robust SSDU trains the reconstruction network to map from a further noisy and sub-sampled version of the data to the original, singly noisy, and sub-sampled data and applies an additive Noisier2Noise correction term upon inference. We also present a related method, Noiser2Full, that recovers clean images when noisy, fully sampled data are available for training. Both proposed methods are applicable to any network architecture, are straightforward to implement, and have a similar computational cost to standard training. We evaluate our methods on the multi-coil fastMRI brain dataset with novel denoising-specific architecture and find that it performs competitively with a benchmark trained on clean, fully sampled data.

{"title":"Clean Self-Supervised MRI Reconstruction from Noisy, Sub-Sampled Training Data with Robust SSDU.","authors":"Charles Millard, Mark Chiew","doi":"10.3390/bioengineering11121305","DOIUrl":"10.3390/bioengineering11121305","url":null,"abstract":"<p><p>Most existing methods for magnetic resonance imaging (MRI) reconstruction with deep learning use fully supervised training, which assumes that a fully sampled dataset with a high signal-to-noise ratio (SNR) is available for training. In many circumstances, however, such a dataset is highly impractical or even technically infeasible to acquire. Recently, a number of self-supervised methods for MRI reconstruction have been proposed, which use sub-sampled data only. However, the majority of such methods, such as Self-Supervised Learning via Data Undersampling (SSDU), are susceptible to reconstruction errors arising from noise in the measured data. In response, we propose Robust SSDU, which provably recovers clean images from noisy, sub-sampled training data by simultaneously estimating missing k-space samples and denoising the available samples. Robust SSDU trains the reconstruction network to map from a further noisy and sub-sampled version of the data to the original, singly noisy, and sub-sampled data and applies an additive Noisier2Noise correction term upon inference. We also present a related method, Noiser2Full, that recovers clean images when noisy, fully sampled data are available for training. Both proposed methods are applicable to any network architecture, are straightforward to implement, and have a similar computational cost to standard training. We evaluate our methods on the multi-coil fastMRI brain dataset with novel denoising-specific architecture and find that it performs competitively with a benchmark trained on clean, fully sampled data.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726718/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142977170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nannochloris sp. JB17 as a Potential Microalga for Carbon Capture and Utilization Bio-Systems: Growth and Biochemical Composition Under High Bicarbonate Concentrations in Fresh and Sea Water.
IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-23 DOI: 10.3390/bioengineering11121301
Giorgos Markou, Eleni Kougia, Dimitris Arapoglou

Nannochloris sp. JB17 has been identified as an interesting microalgal species that can tolerate high salinity and high bicarbonate concentrations. In this study, Nannochloris sp. JB17 was long-term adapted to increased bicarbonate concentrations (10-60 g NaHCO3 per L) in fresh or sea-water-based growing media. This study aimed to evaluate its growth performance and biochemical composition under different cultivation conditions. The highest biomass production (1.24-1.3 g/L) achieved in the study was obtained in fresh water media supplemented with 40 g/L and 60 g/L NaHCO3, respectively. Total protein content fluctuated at similar levels among the different treatments (32.4-38.5%), displaying good essential amino acids indices of 0.85-1.02, but with low in vitro protein digestibility (15-20%) rates. Total lipids did not show any significant alteration among the different NaHCO3 concentrations in both fresh and sea water (12.6-13.3%) but at increased sodium strength, a significant increase in unsaturated lipids and in particular a-linolenic acid (C18:3) and linoleic acid (C18:2) was observed. Carbohydrate content also ranged at very similar levels among the cultures (26-30.9%). The main fraction of carbohydrates was in the type of neutral sugars ranging from around 72% to 80% (of total carbohydrates), while uronic acids were in negligible amounts. Moreover, Nannochloris sp. showed that it contained around 8-9% sulfated polysaccharides. Since the microalgae display good growth patterns at high bicarbonate concentrations, they could be a potential species for microalgal-based carbon capture and utilization systems.

Nannochloris sp. JB17 是一种有趣的微藻类,能够耐受高盐度和高浓度的碳酸氢盐。在本研究中,Nannochloris sp. JB17 在淡水或海水为基础的生长介质中长期适应较高的碳酸氢盐浓度(10-60 g NaHCO3 per L)。本研究旨在评估其在不同培养条件下的生长性能和生化成分。研究中,淡水培养基中分别添加 40 g/L 和 60 g/L NaHCO3 的生物量产量最高(1.24-1.3 g/L)。不同处理的总蛋白质含量波动水平相似(32.4%-38.5%),必需氨基酸指数为 0.85-1.02,但体外蛋白质消化率较低(15%-20%)。淡水和海水中不同浓度的 NaHCO3(12.6-13.3%)对总脂质的影响不大,但当钠浓度增加时,不饱和脂质,特别是 a-亚麻酸(C18:3)和亚油酸(C18:2)的含量显著增加。各培养物的碳水化合物含量也非常接近(26-30.9%)。碳水化合物的主要成分是中性糖类,约占碳水化合物总量的 72% 至 80%,而尿酸的含量微乎其微。此外,Nannochloris sp.显示其含有约 8-9% 的硫酸化多糖。由于这些微藻在高浓度碳酸氢盐条件下显示出良好的生长模式,它们可能成为基于微藻的碳捕获和利用系统的潜在物种。
{"title":"<i>Nannochloris</i> sp. JB17 as a Potential Microalga for Carbon Capture and Utilization Bio-Systems: Growth and Biochemical Composition Under High Bicarbonate Concentrations in Fresh and Sea Water.","authors":"Giorgos Markou, Eleni Kougia, Dimitris Arapoglou","doi":"10.3390/bioengineering11121301","DOIUrl":"10.3390/bioengineering11121301","url":null,"abstract":"<p><p><i>Nannochloris</i> sp. JB17 has been identified as an interesting microalgal species that can tolerate high salinity and high bicarbonate concentrations. In this study, <i>Nannochloris</i> sp. JB17 was long-term adapted to increased bicarbonate concentrations (10-60 g NaHCO<sub>3</sub> per L) in fresh or sea-water-based growing media. This study aimed to evaluate its growth performance and biochemical composition under different cultivation conditions. The highest biomass production (1.24-1.3 g/L) achieved in the study was obtained in fresh water media supplemented with 40 g/L and 60 g/L NaHCO<sub>3</sub>, respectively. Total protein content fluctuated at similar levels among the different treatments (32.4-38.5%), displaying good essential amino acids indices of 0.85-1.02, but with low in vitro protein digestibility (15-20%) rates. Total lipids did not show any significant alteration among the different NaHCO<sub>3</sub> concentrations in both fresh and sea water (12.6-13.3%) but at increased sodium strength, a significant increase in unsaturated lipids and in particular a-linolenic acid (C18:3) and linoleic acid (C18:2) was observed. Carbohydrate content also ranged at very similar levels among the cultures (26-30.9%). The main fraction of carbohydrates was in the type of neutral sugars ranging from around 72% to 80% (of total carbohydrates), while uronic acids were in negligible amounts. Moreover, <i>Nannochloris</i> sp. showed that it contained around 8-9% sulfated polysaccharides. Since the microalgae display good growth patterns at high bicarbonate concentrations, they could be a potential species for microalgal-based carbon capture and utilization systems.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727422/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142977081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of the Active Sludge Microorganisms Population During Wastewater Treatment in a Micro-Pilot Plant.
IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-23 DOI: 10.3390/bioengineering11121306
Daniela Roxana Popovici, Catalina Gabriela Gheorghe, Cristina Maria Dușescu-Vasile

Knowledge of the impact of chemicals on the environment is important for assessing the risks that chemicals can generate in ecosystems. With the help of pilot-scale micro-tests, it was possible to evaluate the biological sludge in terms of its chemical and biological composition, information that can be applied on an industrial scale in treatment plants. The important parameters analyzed in the evaluation of the biodegradability of wastewater were pH, chemical composition (NH4+, NO3-, NO2-, and PO43-), dry substance (DS), inorganic substance (IS), and organic substance (OS), and the biological oxygen demand (BOD)/chemical oxygen consumption (COD) ratio. The examination revealed the presence of free active ciliates Aspidisca polystyla, Lyndonotus setigerum, Vorticella microstoma, fixed by Zooglee, Paramecium sp., Opercularia, Colpoda colpidium, Euplotes, Didinum nasutum, Stentor, and Acineta tuberosa, metazoa Rotifers, filamentous algae, Nostoc and Anabena, and bacteria Bacillus subtilis, Nocardia, and Microccocus luteus. The novelty of this study lies in the fact that we carried out a study to evaluate the population of microorganisms starting from the premise that the probability of biodegradation of substances is directly proportional to the number of microorganisms existing in the environment and their enzymatic equipment.

{"title":"Assessment of the Active Sludge Microorganisms Population During Wastewater Treatment in a Micro-Pilot Plant.","authors":"Daniela Roxana Popovici, Catalina Gabriela Gheorghe, Cristina Maria Dușescu-Vasile","doi":"10.3390/bioengineering11121306","DOIUrl":"10.3390/bioengineering11121306","url":null,"abstract":"<p><p>Knowledge of the impact of chemicals on the environment is important for assessing the risks that chemicals can generate in ecosystems. With the help of pilot-scale micro-tests, it was possible to evaluate the biological sludge in terms of its chemical and biological composition, information that can be applied on an industrial scale in treatment plants. The important parameters analyzed in the evaluation of the biodegradability of wastewater were pH, chemical composition (NH<sub>4</sub><sup>+</sup>, NO<sub>3</sub><sup>-</sup>, NO<sub>2</sub><sup>-</sup>, and PO<sub>4</sub><sup>3-</sup>), dry substance (DS), inorganic substance (IS), and organic substance (OS), and the biological oxygen demand (BOD)/chemical oxygen consumption (COD) ratio. The examination revealed the presence of free active ciliates <i>Aspidisca polystyla</i>, <i>Lyndonotus setigerum</i>, <i>Vorticella microstoma</i>, fixed by <i>Zooglee</i>, <i>Paramecium</i> sp., <i>Opercularia</i>, <i>Colpoda colpidium</i>, <i>Euplotes</i>, <i>Didinum nasutum</i>, <i>Stentor</i>, and <i>Acineta tuberosa,</i> metazoa <i>Rotifers</i>, filamentous algae, <i>Nostoc</i> and <i>Anabena</i>, and bacteria <i>Bacillus subtilis</i>, <i>Nocardia</i>, and <i>Microccocus luteus.</i> The novelty of this study lies in the fact that we carried out a study to evaluate the population of microorganisms starting from the premise that the probability of biodegradation of substances is directly proportional to the number of microorganisms existing in the environment and their enzymatic equipment.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727538/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142977161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
siRNA Treatment Enhances Collagen Fiber Formation in Tissue-Engineered Meniscus via Transient Inhibition of Aggrecan Production.
IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-23 DOI: 10.3390/bioengineering11121308
Serafina G Lopez, Lara A Estroff, Lawrence J Bonassar

The complex collagen network of the native meniscus and the gradient of the density and alignment of this network through the meniscal enthesis is essential for the proper mechanical function of these tissues. This architecture is difficult to recapitulate in tissue-engineered replacement strategies. Prenatally, the organization of the collagen fiber network is established and aggrecan content is minimal. In vitro, fibrochondrocytes (FCCs) produce proteoglycans and associated glycosaminoglycan (GAG) chains early in culture, which can inhibit collagen fiber formation during the maturation of tissue-engineered menisci. Thus, it would be beneficial to both specifically and temporarily block deposition of proteoglycans early in culture. In this study, we transiently inhibited aggrecan production by meniscal fibrochondrocytes using siRNA in collagen gel-based tissue-engineered constructs. We evaluated the effect of siRNA treatment on the formation of collagen fibrils and bulk and microscale tensile properties. Specific inhibition of aggrecan production by fibrochondrocytes via siRNA was successful both in 2D monolayer cell culture and 3D tissue culture. This inhibition during early maturation of these in vitro constructs increased collagen fibril diameter by more than 2-fold. This increase in fibril diameter allowed these tissues to distribute strains more effectively at the local level, particularly at the interface of the bone and soft tissue. These data show that siRNA can be used to modulate the ECM to improve collagen fiber formation and mechanical properties in tissue-engineered constructs, and that a transient decrease in aggrecan promotes the formation of a more robust fiber network.

{"title":"siRNA Treatment Enhances Collagen Fiber Formation in Tissue-Engineered Meniscus via Transient Inhibition of Aggrecan Production.","authors":"Serafina G Lopez, Lara A Estroff, Lawrence J Bonassar","doi":"10.3390/bioengineering11121308","DOIUrl":"10.3390/bioengineering11121308","url":null,"abstract":"<p><p>The complex collagen network of the native meniscus and the gradient of the density and alignment of this network through the meniscal enthesis is essential for the proper mechanical function of these tissues. This architecture is difficult to recapitulate in tissue-engineered replacement strategies. Prenatally, the organization of the collagen fiber network is established and aggrecan content is minimal. In vitro, fibrochondrocytes (FCCs) produce proteoglycans and associated glycosaminoglycan (GAG) chains early in culture, which can inhibit collagen fiber formation during the maturation of tissue-engineered menisci. Thus, it would be beneficial to both specifically and temporarily block deposition of proteoglycans early in culture. In this study, we transiently inhibited aggrecan production by meniscal fibrochondrocytes using siRNA in collagen gel-based tissue-engineered constructs. We evaluated the effect of siRNA treatment on the formation of collagen fibrils and bulk and microscale tensile properties. Specific inhibition of aggrecan production by fibrochondrocytes via siRNA was successful both in 2D monolayer cell culture and 3D tissue culture. This inhibition during early maturation of these in vitro constructs increased collagen fibril diameter by more than 2-fold. This increase in fibril diameter allowed these tissues to distribute strains more effectively at the local level, particularly at the interface of the bone and soft tissue. These data show that siRNA can be used to modulate the ECM to improve collagen fiber formation and mechanical properties in tissue-engineered constructs, and that a transient decrease in aggrecan promotes the formation of a more robust fiber network.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727199/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142977370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Focus on Tumor Boundaries: A Lightweight U-Net for MRI Brain Tumor Segmentation.
IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-23 DOI: 10.3390/bioengineering11121302
Kuldashboy Avazov, Sanjar Mirzakhalilov, Sabina Umirzakova, Akmalbek Abdusalomov, Young Im Cho

Accurate segmentation of brain tumors in MRI scans is critical for diagnosis and treatment planning. Traditional segmentation models, such as U-Net, excel in capturing spatial information but often struggle with complex tumor boundaries and subtle variations in image contrast. These limitations can lead to inconsistencies in identifying critical regions, impacting the accuracy of clinical outcomes. To address these challenges, this paper proposes a novel modification to the U-Net architecture by integrating a spatial attention mechanism designed to dynamically focus on relevant regions within MRI scans. This innovation enhances the model's ability to delineate fine tumor boundaries and improves segmentation precision. Our model was evaluated on the Figshare dataset, which includes annotated MRI images of meningioma, glioma, and pituitary tumors. The proposed model achieved a Dice similarity coefficient (DSC) of 0.93, a recall of 0.95, and an AUC of 0.94, outperforming existing approaches such as V-Net, DeepLab V3+, and nnU-Net. These results demonstrate the effectiveness of our model in addressing key challenges like low-contrast boundaries, small tumor regions, and overlapping tumors. Furthermore, the lightweight design of the model ensures its suitability for real-time clinical applications, making it a robust tool for automated tumor segmentation. This study underscores the potential of spatial attention mechanisms to significantly enhance medical imaging models and paves the way for more effective diagnostic tools.

{"title":"Dynamic Focus on Tumor Boundaries: A Lightweight U-Net for MRI Brain Tumor Segmentation.","authors":"Kuldashboy Avazov, Sanjar Mirzakhalilov, Sabina Umirzakova, Akmalbek Abdusalomov, Young Im Cho","doi":"10.3390/bioengineering11121302","DOIUrl":"10.3390/bioengineering11121302","url":null,"abstract":"<p><p>Accurate segmentation of brain tumors in MRI scans is critical for diagnosis and treatment planning. Traditional segmentation models, such as U-Net, excel in capturing spatial information but often struggle with complex tumor boundaries and subtle variations in image contrast. These limitations can lead to inconsistencies in identifying critical regions, impacting the accuracy of clinical outcomes. To address these challenges, this paper proposes a novel modification to the U-Net architecture by integrating a spatial attention mechanism designed to dynamically focus on relevant regions within MRI scans. This innovation enhances the model's ability to delineate fine tumor boundaries and improves segmentation precision. Our model was evaluated on the Figshare dataset, which includes annotated MRI images of meningioma, glioma, and pituitary tumors. The proposed model achieved a Dice similarity coefficient (DSC) of 0.93, a recall of 0.95, and an AUC of 0.94, outperforming existing approaches such as V-Net, DeepLab V3+, and nnU-Net. These results demonstrate the effectiveness of our model in addressing key challenges like low-contrast boundaries, small tumor regions, and overlapping tumors. Furthermore, the lightweight design of the model ensures its suitability for real-time clinical applications, making it a robust tool for automated tumor segmentation. This study underscores the potential of spatial attention mechanisms to significantly enhance medical imaging models and paves the way for more effective diagnostic tools.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727338/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142977284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complex Large-Deformation Multimodality Image Registration Network for Image-Guided Radiotherapy of Cervical Cancer.
IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-23 DOI: 10.3390/bioengineering11121304
Ping Jiang, Sijia Wu, Wenjian Qin, Yaoqin Xie

In recent years, image-guided brachytherapy for cervical cancer has become an important treatment method for patients with locally advanced cervical cancer, and multi-modality image registration technology is a key step in this system. However, due to the patient's own movement and other factors, the deformation between the different modalities of images is discontinuous, which brings great difficulties to the registration of pelvic computed tomography (CT/) and magnetic resonance (MR) images. In this paper, we propose a multimodality image registration network based on multistage transformation enhancement features (MTEF) to maintain the continuity of the deformation field. The model uses wavelet transform to extract different components of the image and performs fusion and enhancement processing as the input to the model. The model performs multiple registrations from local to global regions. Then, we propose a novel shared pyramid registration network that can accurately extract features from different modalities, optimizing the predicted deformation field through progressive refinement. In order to improve the registration performance, we also propose a deep learning similarity measurement method combined with bistructural morphology. On the basis of deep learning, bistructural morphology is added to the model to train the pelvic area registration evaluator, and the model can obtain parameters covering large deformation for loss function. The model was verified by the actual clinical data of cervical cancer patients. After a large number of experiments, our proposed model achieved the highest dice similarity coefficient (DSC) metric compared with the state-of-the-art registration methods. The DSC index of the MTEF algorithm is 5.64% higher than that of the TransMorph algorithm. It will effectively integrate multi-modal image information, improve the accuracy of tumor localization, and benefit more cervical cancer patients.

{"title":"Complex Large-Deformation Multimodality Image Registration Network for Image-Guided Radiotherapy of Cervical Cancer.","authors":"Ping Jiang, Sijia Wu, Wenjian Qin, Yaoqin Xie","doi":"10.3390/bioengineering11121304","DOIUrl":"10.3390/bioengineering11121304","url":null,"abstract":"<p><p>In recent years, image-guided brachytherapy for cervical cancer has become an important treatment method for patients with locally advanced cervical cancer, and multi-modality image registration technology is a key step in this system. However, due to the patient's own movement and other factors, the deformation between the different modalities of images is discontinuous, which brings great difficulties to the registration of pelvic computed tomography (CT/) and magnetic resonance (MR) images. In this paper, we propose a multimodality image registration network based on multistage transformation enhancement features (MTEF) to maintain the continuity of the deformation field. The model uses wavelet transform to extract different components of the image and performs fusion and enhancement processing as the input to the model. The model performs multiple registrations from local to global regions. Then, we propose a novel shared pyramid registration network that can accurately extract features from different modalities, optimizing the predicted deformation field through progressive refinement. In order to improve the registration performance, we also propose a deep learning similarity measurement method combined with bistructural morphology. On the basis of deep learning, bistructural morphology is added to the model to train the pelvic area registration evaluator, and the model can obtain parameters covering large deformation for loss function. The model was verified by the actual clinical data of cervical cancer patients. After a large number of experiments, our proposed model achieved the highest dice similarity coefficient (DSC) metric compared with the state-of-the-art registration methods. The DSC index of the MTEF algorithm is 5.64% higher than that of the TransMorph algorithm. It will effectively integrate multi-modal image information, improve the accuracy of tumor localization, and benefit more cervical cancer patients.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726759/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142977177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Hemispherical 3D Models of Human Brain and B Cell Lymphomas Using On-Chip Cell Dome System.
IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-23 DOI: 10.3390/bioengineering11121303
Ryotaro Kazama, Rina Ishikawa, Shinji Sakai

Lymphocytes are generally non-adherent. This makes it challenging to fabricate three-dimensional (3D) structures mimicking the three-dimensional lymphoma microenvironment in vivo. This study presents the fabrication of a hemispherical 3D lymphoma model using the on-chip Cell Dome system with a hemispherical cavity (1 mm in diameter and almost 300 µm in height). Both the human brain lymphoma cell line (TK) and human B cell lymphoma cell line (KML-1) proliferated and filled the cavities. Hypoxic regions were observed in the center of the hemispherical structures. CD19 expression did not change in either cell line, while CD20 expression was slightly upregulated in TK cells and downregulated in KML-1 cells cultured in the Cell Dome compared to those cultured in two-dimensional (2D) flasks. In addition, both TK and KML-1 cells in the hemispherical structures exhibited higher resistance to doxorubicin than those in 2D flasks. These results demonstrate the effectiveness of the on-chip Cell Dome for fabricating 3D lymphoma models and provide valuable insights into the study of lymphoma behavior and the development of new drugs for lymphoma treatment.

{"title":"Development of Hemispherical 3D Models of Human Brain and B Cell Lymphomas Using On-Chip Cell Dome System.","authors":"Ryotaro Kazama, Rina Ishikawa, Shinji Sakai","doi":"10.3390/bioengineering11121303","DOIUrl":"10.3390/bioengineering11121303","url":null,"abstract":"<p><p>Lymphocytes are generally non-adherent. This makes it challenging to fabricate three-dimensional (3D) structures mimicking the three-dimensional lymphoma microenvironment in vivo. This study presents the fabrication of a hemispherical 3D lymphoma model using the on-chip Cell Dome system with a hemispherical cavity (1 mm in diameter and almost 300 µm in height). Both the human brain lymphoma cell line (TK) and human B cell lymphoma cell line (KML-1) proliferated and filled the cavities. Hypoxic regions were observed in the center of the hemispherical structures. CD19 expression did not change in either cell line, while CD20 expression was slightly upregulated in TK cells and downregulated in KML-1 cells cultured in the Cell Dome compared to those cultured in two-dimensional (2D) flasks. In addition, both TK and KML-1 cells in the hemispherical structures exhibited higher resistance to doxorubicin than those in 2D flasks. These results demonstrate the effectiveness of the on-chip Cell Dome for fabricating 3D lymphoma models and provide valuable insights into the study of lymphoma behavior and the development of new drugs for lymphoma treatment.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727638/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142977275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNA Sequencing Revealed a Weak Response of Gingival Fibroblasts Exposed to Hyaluronic Acid.
IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-23 DOI: 10.3390/bioengineering11121307
Layla Panahipour, Atefe Imani, Natália Dos Santos Sanches, Hannes Kühtreiber, Michael Mildner, Reinhard Gruber

Hyaluronic acid was proposed to support soft tissue recession surgery and guided tissue regeneration. The molecular mechanisms through which hyaluronic acid modulates the response of connective tissue cells remain elusive. To elucidate the impact of hyaluronic acid on the connective tissue cells, we used bulk RNA sequencing to determine the changes in the genetic signature of gingival fibroblasts exposed to 1.6% cross-linked hyaluronic acid and 0.2% natural hyaluronic acid. Transcriptome-wide changes were modest. Even when implementing a minimum of 1.5 log2 fold-change and a significance threshold of 1.0 -log10, only a dozenth of genes were differentially expressed. Upregulated genes were PLK3, SLC16A6, IL6, HBEGF, DGKE, DUSP4, PTGS2, FOXC2, ATAD2B, NFATC2, and downregulated genes were MMP24 and PLXNA2. RT-PCR analysis supported the impact of hyaluronic acid on increasing the expression of a selected gene panel. The findings from bulk RNA sequencing suggest that gingival fibroblasts experience weak changes in their transcriptome when exposed to hyaluronic acid.

{"title":"RNA Sequencing Revealed a Weak Response of Gingival Fibroblasts Exposed to Hyaluronic Acid.","authors":"Layla Panahipour, Atefe Imani, Natália Dos Santos Sanches, Hannes Kühtreiber, Michael Mildner, Reinhard Gruber","doi":"10.3390/bioengineering11121307","DOIUrl":"10.3390/bioengineering11121307","url":null,"abstract":"<p><p>Hyaluronic acid was proposed to support soft tissue recession surgery and guided tissue regeneration. The molecular mechanisms through which hyaluronic acid modulates the response of connective tissue cells remain elusive. To elucidate the impact of hyaluronic acid on the connective tissue cells, we used bulk RNA sequencing to determine the changes in the genetic signature of gingival fibroblasts exposed to 1.6% cross-linked hyaluronic acid and 0.2% natural hyaluronic acid. Transcriptome-wide changes were modest. Even when implementing a minimum of 1.5 log2 fold-change and a significance threshold of 1.0 -log10, only a dozenth of genes were differentially expressed. Upregulated genes were PLK3, SLC16A6, IL6, HBEGF, DGKE, DUSP4, PTGS2, FOXC2, ATAD2B, NFATC2, and downregulated genes were MMP24 and PLXNA2. RT-PCR analysis supported the impact of hyaluronic acid on increasing the expression of a selected gene panel. The findings from bulk RNA sequencing suggest that gingival fibroblasts experience weak changes in their transcriptome when exposed to hyaluronic acid.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726844/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142977368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization and Standardization of Stable De-Epidermized Dermis (DED) Models for Functional Evaluation of Cutaneous Cell Therapies.
IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-20 DOI: 10.3390/bioengineering11121297
Xi Chen, Corinne Scaletta, Zhifeng Liao, Alexis Laurent, Lee Ann Applegate, Nathalie Hirt-Burri

The human skin is a remarkable organ capable of extensive regeneration, especially after severe injuries such as burns and related wounds. The de-epidermized dermis (DED) model has become a valuable in vitro tool for skin regeneration studies, particularly for testing the mechanism of action and the efficacy of clinical cutaneous cell therapies. To further improve the quality and robustness of these applications, our study focused on optimizing and standardizing DED tissue preparation and storage, enhancing its effectiveness for clinical testing. Therefore, we optimized the air-liquid interfacial culture medium composition by simplifying the historical formulation without compromising keratinocyte (therapeutic cell model) viability or proliferation. Furthermore, we investigated the impacts of adding burn wound exudates in the model by focusing on cell behavior for enhanced translational significance. The results revealed notable differences in keratinocyte adhesion and proliferation between burn wound exudates collected at the early stages and late stages of acute patient treatment, providing new information on a possible therapeutic window to apply cell therapies on burn patients. Generally, this study reported a robust method for the preclinical in vitro assessment of keratinocyte-based cutaneous cell therapies using DED models. Overall, the study underscored the importance of using in vitro models with enhanced translational relevance to better predict the clinical effects of cutaneous cell therapies in burn patient populations.

{"title":"Optimization and Standardization of Stable De-Epidermized Dermis (DED) Models for Functional Evaluation of Cutaneous Cell Therapies.","authors":"Xi Chen, Corinne Scaletta, Zhifeng Liao, Alexis Laurent, Lee Ann Applegate, Nathalie Hirt-Burri","doi":"10.3390/bioengineering11121297","DOIUrl":"10.3390/bioengineering11121297","url":null,"abstract":"<p><p>The human skin is a remarkable organ capable of extensive regeneration, especially after severe injuries such as burns and related wounds. The de-epidermized dermis (DED) model has become a valuable in vitro tool for skin regeneration studies, particularly for testing the mechanism of action and the efficacy of clinical cutaneous cell therapies. To further improve the quality and robustness of these applications, our study focused on optimizing and standardizing DED tissue preparation and storage, enhancing its effectiveness for clinical testing. Therefore, we optimized the air-liquid interfacial culture medium composition by simplifying the historical formulation without compromising keratinocyte (therapeutic cell model) viability or proliferation. Furthermore, we investigated the impacts of adding burn wound exudates in the model by focusing on cell behavior for enhanced translational significance. The results revealed notable differences in keratinocyte adhesion and proliferation between burn wound exudates collected at the early stages and late stages of acute patient treatment, providing new information on a possible therapeutic window to apply cell therapies on burn patients. Generally, this study reported a robust method for the preclinical in vitro assessment of keratinocyte-based cutaneous cell therapies using DED models. Overall, the study underscored the importance of using in vitro models with enhanced translational relevance to better predict the clinical effects of cutaneous cell therapies in burn patient populations.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727145/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142977310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing CT Esophagography: Ex Vivo Study on Contrast Ratios, Image Quality, and Dual-Energy Benefits.
IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-20 DOI: 10.3390/bioengineering11121300
Luwen Hao, Xin Chen, Yuchen Jiang, Yufan Wang, Xuemei Hu, Daoyu Hu, Zhen Li, Yaqi Shen

This study aimed to optimize CT esophagography by identifying effective oral contrast dilution ratios and exploring the advantages of dual-energy CT (DECT) over conventional CT for improving image quality. Ex vivo experiments using iodine contrast agents (320-400 mgI/mL) at 21 dilution ratios were scanned at three voltages, with additional dual-energy scans generating various reconstruction images. Image quality was assessed both objectively and subjectively. The study found significant variability in image quality across different dilution ratios. Specific dilution ratios that produced image quality comparable to the control group (a commercial oral contrast agent) and those meeting the standards for clinical diagnosis and high-quality images were identified based on image quality assessments. Recommendations for preparing 100 mL of oral contrast solution were provided, such as for achieving high-quality images at a scanning voltage of 100 kVp: the optimal dilution ratios are 1:6 to 1:19 for 320 mgI/mL, and 1:8 to 1:19 for 350 to 400 mgI/mL. Additionally, beam-hardening artifacts were significantly reduced in DECT images. These findings provide valuable guidance for improving CT esophagography protocols.

{"title":"Optimizing CT Esophagography: Ex Vivo Study on Contrast Ratios, Image Quality, and Dual-Energy Benefits.","authors":"Luwen Hao, Xin Chen, Yuchen Jiang, Yufan Wang, Xuemei Hu, Daoyu Hu, Zhen Li, Yaqi Shen","doi":"10.3390/bioengineering11121300","DOIUrl":"10.3390/bioengineering11121300","url":null,"abstract":"<p><p>This study aimed to optimize CT esophagography by identifying effective oral contrast dilution ratios and exploring the advantages of dual-energy CT (DECT) over conventional CT for improving image quality. Ex vivo experiments using iodine contrast agents (320-400 mgI/mL) at 21 dilution ratios were scanned at three voltages, with additional dual-energy scans generating various reconstruction images. Image quality was assessed both objectively and subjectively. The study found significant variability in image quality across different dilution ratios. Specific dilution ratios that produced image quality comparable to the control group (a commercial oral contrast agent) and those meeting the standards for clinical diagnosis and high-quality images were identified based on image quality assessments. Recommendations for preparing 100 mL of oral contrast solution were provided, such as for achieving high-quality images at a scanning voltage of 100 kVp: the optimal dilution ratios are 1:6 to 1:19 for 320 mgI/mL, and 1:8 to 1:19 for 350 to 400 mgI/mL. Additionally, beam-hardening artifacts were significantly reduced in DECT images. These findings provide valuable guidance for improving CT esophagography protocols.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727102/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142977312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Bioengineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1