Phase-Field Modeling of Hydraulic Fracture in Porous Media with In Situ Stresses

Processes Pub Date : 2024-08-09 DOI:10.3390/pr12081671
Tao You
{"title":"Phase-Field Modeling of Hydraulic Fracture in Porous Media with In Situ Stresses","authors":"Tao You","doi":"10.3390/pr12081671","DOIUrl":null,"url":null,"abstract":"While the variational phase-field model has been widely used in modeling fracturing in porous media, it poses a challenge when applying high confining pressures on a model because the relatively large deformation induced by the confining pressures might cause undesired crack nucleation when the strain decomposition scheme are used, which is not consistent with engineering observations. This study proposes a two-step strategy to incorporate in situ stresses into phase-field modeling of hydraulic fractures, addressing the limitations of previous approaches in capturing realistic fracture initiation and propagation under high confinement. A micromechanics-based hydromechanical phase-field model is presented first, and the proposed two-step strategy is investigated with different strain decomposition schemes: isotropic, volumetric–deviatoric, and no-tension models. Two numerical examples show that the two-step strategy effectively achieves a desired initial state with geostatic stresses and zero strain, allowing for accurate simulations even in the presence of complex natural fractures. The efficiency of the proposed two-step strategy for incorporating in situ stresses is highlighted, and the challenges associated with capturing stiffness recovery and shear fracture nucleation under high confinement using strain-based models are discussed.","PeriodicalId":506892,"journal":{"name":"Processes","volume":"53 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/pr12081671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

While the variational phase-field model has been widely used in modeling fracturing in porous media, it poses a challenge when applying high confining pressures on a model because the relatively large deformation induced by the confining pressures might cause undesired crack nucleation when the strain decomposition scheme are used, which is not consistent with engineering observations. This study proposes a two-step strategy to incorporate in situ stresses into phase-field modeling of hydraulic fractures, addressing the limitations of previous approaches in capturing realistic fracture initiation and propagation under high confinement. A micromechanics-based hydromechanical phase-field model is presented first, and the proposed two-step strategy is investigated with different strain decomposition schemes: isotropic, volumetric–deviatoric, and no-tension models. Two numerical examples show that the two-step strategy effectively achieves a desired initial state with geostatic stresses and zero strain, allowing for accurate simulations even in the presence of complex natural fractures. The efficiency of the proposed two-step strategy for incorporating in situ stresses is highlighted, and the challenges associated with capturing stiffness recovery and shear fracture nucleation under high confinement using strain-based models are discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带原位应力的多孔介质水力压裂相场模型
虽然变分相场模型已广泛应用于多孔介质压裂建模,但在对模型施加高约束压力时却面临挑战,因为在采用应变分解方案时,约束压力引起的相对较大的变形可能会导致不期望的裂缝成核,这与工程观测结果不符。本研究提出了将原位应力纳入水力压裂相场建模的两步策略,解决了以往方法在捕捉高约束下真实压裂萌发和扩展方面的局限性。首先介绍了基于微观力学的水力机械相场模型,然后使用不同的应变分解方案(各向同性模型、体积偏差模型和无张力模型)对所提出的两步策略进行了研究。两个数值实例表明,两步法有效地实现了地应力和零应变的理想初始状态,即使在存在复杂天然裂缝的情况下也能进行精确模拟。重点介绍了所提出的两步策略在纳入原位应力方面的效率,并讨论了使用基于应变的模型捕捉高约束下的刚度恢复和剪切断裂成核所面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phase-Field Modeling of Hydraulic Fracture in Porous Media with In Situ Stresses Segmentation Differences of the Salt-Related Qiulitage Fold and Thrust Belt in the Kuqa Foreland Basin Novel Landfill-Gas-to-Biomethane Route Using a Gas–Liquid Membrane Contactor for Decarbonation/Desulfurization and Selexol Absorption for Siloxane Removal Research on Micropore Development Characteristics and Influencing Factors during CO2 Huff-n-Puff Effects of Room-Temperature Center Gas Distributor Injection on the H2 Shaft Furnace Process: A Numerical Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1