{"title":"Numerical investigation of packed granular beds subjected to thermal cycling with application to thermal energy storage systems: a continuous approach","authors":"Pavel Iliev","doi":"10.1007/s10035-024-01453-z","DOIUrl":null,"url":null,"abstract":"<div><p>Thermal energy storage (TES) systems have been proven in their capacity as a crucial component of energy grids relying on renewable sources. An established sensible heat storage technology is a packed-bed TES, employing a granular filling material as a heat storage medium, which is subjected to repeated heating-cooling cycles. As a result of the recurring particle expansion and contraction, excessive stresses and strains can develop and cause material damage. This leads to the increasing need for reliable numerical tools in order to improve the TES design and increase their durability. For this purpose, we propose a continuous thermo-mechanical approach, within the framework of the theory of hypoplasticity, that can accurately predict the single as well as cyclic loading behavior of the filling material. This work focuses on the stress–strain relations and compaction mechanisms of the granular bed in contact with a storage wall with variable inclination and friction coefficient. Furthermore, the important aspect of the wall expansion under the temperature change is also taken into account as well as the specific case when the wall expands more than the granular material. By conducting comprehensive simulations, we demonstrate that our novel numerical model adheres to existing experimental investigations and mitigates shortcomings in the predictive capabilities of previous continuous approaches.</p><h3>Graphic abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"26 4","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-024-01453-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal energy storage (TES) systems have been proven in their capacity as a crucial component of energy grids relying on renewable sources. An established sensible heat storage technology is a packed-bed TES, employing a granular filling material as a heat storage medium, which is subjected to repeated heating-cooling cycles. As a result of the recurring particle expansion and contraction, excessive stresses and strains can develop and cause material damage. This leads to the increasing need for reliable numerical tools in order to improve the TES design and increase their durability. For this purpose, we propose a continuous thermo-mechanical approach, within the framework of the theory of hypoplasticity, that can accurately predict the single as well as cyclic loading behavior of the filling material. This work focuses on the stress–strain relations and compaction mechanisms of the granular bed in contact with a storage wall with variable inclination and friction coefficient. Furthermore, the important aspect of the wall expansion under the temperature change is also taken into account as well as the specific case when the wall expands more than the granular material. By conducting comprehensive simulations, we demonstrate that our novel numerical model adheres to existing experimental investigations and mitigates shortcomings in the predictive capabilities of previous continuous approaches.
期刊介绍:
Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science.
These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations.
>> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa.
The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.