Xiangming Dai, Zhigang Li, Litian Hu, Peizhen Zhang, Xiaoqiang Yang, Rafael Almeida, Guanhua Li
{"title":"Exploring Fault Geometry and Holocene Deformation of the Littoral Fault Zone within the Seismic Gap South of Greater Bay Area, China","authors":"Xiangming Dai, Zhigang Li, Litian Hu, Peizhen Zhang, Xiaoqiang Yang, Rafael Almeida, Guanhua Li","doi":"10.3390/jmse12081350","DOIUrl":null,"url":null,"abstract":"Over the past 424 years, the Littoral Fault Zone (LFZ), located offshore of the South China coast, has experienced four destructive earthquakes (M ≥ 7). These events have resulted in an approximately 700 km seismic gap centered on the Greater Bay Area of China, home to over 70 million people. Despite previous studies on deeper crustal structures and geodynamic processes, the shallow structural architecture and recent tectonic activity of the LFZ within the seismic gap remain poorly understood due to limited offshore geophysical investigations. Here, we present new offshore geophysical data to explore the shallow crustal architecture and Holocene activity of the LFZ within this seismic gap. Multichannel seismic data reveal that the LFZ comprises a high-angle listric main normal fault along with several secondary normal faults. The main fault trends northeast and dips southeast in the shallow crustal architecture, serving as the basin-controlling fault in the north of the Pearl River Mouth Basin, with accumulated displacements ranging from 1.5 to 1.8 km. Furthermore, analysis of single-channel seismic data, and 14C dating results from the borehole, indicate that the most recent movement of the main fault occurred within the last ~10,000 years, with minimum vertical offsets of 1.2 m. Based on these findings, we emphasize the LFZ’s potential to generate a significant earthquake, estimated at Mw 7.0–7.5, within the inferred seismic gap. Our study highlights the potential earthquake hazard posed by the LFZ to the Greater Bay Area of China, while also providing valuable insights for the assessment of active submarine faults worldwide.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12081350","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past 424 years, the Littoral Fault Zone (LFZ), located offshore of the South China coast, has experienced four destructive earthquakes (M ≥ 7). These events have resulted in an approximately 700 km seismic gap centered on the Greater Bay Area of China, home to over 70 million people. Despite previous studies on deeper crustal structures and geodynamic processes, the shallow structural architecture and recent tectonic activity of the LFZ within the seismic gap remain poorly understood due to limited offshore geophysical investigations. Here, we present new offshore geophysical data to explore the shallow crustal architecture and Holocene activity of the LFZ within this seismic gap. Multichannel seismic data reveal that the LFZ comprises a high-angle listric main normal fault along with several secondary normal faults. The main fault trends northeast and dips southeast in the shallow crustal architecture, serving as the basin-controlling fault in the north of the Pearl River Mouth Basin, with accumulated displacements ranging from 1.5 to 1.8 km. Furthermore, analysis of single-channel seismic data, and 14C dating results from the borehole, indicate that the most recent movement of the main fault occurred within the last ~10,000 years, with minimum vertical offsets of 1.2 m. Based on these findings, we emphasize the LFZ’s potential to generate a significant earthquake, estimated at Mw 7.0–7.5, within the inferred seismic gap. Our study highlights the potential earthquake hazard posed by the LFZ to the Greater Bay Area of China, while also providing valuable insights for the assessment of active submarine faults worldwide.
期刊介绍:
Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.