{"title":"Control of networked robots subject to communication delay and switching connection topology for cooperative source-seeking with collision avoidance","authors":"Behnam Gharib, Reza Mahboobi Esfanjani","doi":"10.1177/01423312241263654","DOIUrl":null,"url":null,"abstract":"This paper investigates the problem of cooperative source-seeking by networked multi-robot systems subject to variable communication time delay, while all the agents keep a desired formation and avoid collision with each other during the motion. The connection between the robots is modeled by a dynamic and undirected graph, with arbitrary switching based on communication range. The proposed distributed control law which steers the agents toward the source contains a collision avoidance term, developed based on a novel potential function and a field gradient estimation term, computed from the delayed information. Synthesis conditions to adjust the controller parameters are derived in terms of linear matrix inequalities to ensure the team’s convergence to a neighborhood of the source. Finally, simulation results in MATLAB® are presented to demonstrate the efficiency and applicability of the suggested scheme.","PeriodicalId":507087,"journal":{"name":"Transactions of the Institute of Measurement and Control","volume":"78 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Institute of Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/01423312241263654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the problem of cooperative source-seeking by networked multi-robot systems subject to variable communication time delay, while all the agents keep a desired formation and avoid collision with each other during the motion. The connection between the robots is modeled by a dynamic and undirected graph, with arbitrary switching based on communication range. The proposed distributed control law which steers the agents toward the source contains a collision avoidance term, developed based on a novel potential function and a field gradient estimation term, computed from the delayed information. Synthesis conditions to adjust the controller parameters are derived in terms of linear matrix inequalities to ensure the team’s convergence to a neighborhood of the source. Finally, simulation results in MATLAB® are presented to demonstrate the efficiency and applicability of the suggested scheme.