A Web Semantic Mining Method for Fake Cybersecurity Threat Intelligence in Open Source Communities

Zhihua Li, Xinye Yu, Yukai Zhao
{"title":"A Web Semantic Mining Method for Fake Cybersecurity Threat Intelligence in Open Source Communities","authors":"Zhihua Li, Xinye Yu, Yukai Zhao","doi":"10.4018/ijswis.350095","DOIUrl":null,"url":null,"abstract":"In order to overcome the challenges of inadequate classification accuracy in existing fake cybersecurity threat intelligence mining methods and the lack of high-quality public datasets for training classification models, we propose a novel approach that significantly advances the field. We improved the attention mechanism and designed a generative adversarial network based on the improved attention mechanism to generate fake cybersecurity threat intelligence. Additionally, we refine text tokenization techniques and design a detection model to detect fake cybersecurity threats intelligence. Using our STIX-CTIs dataset, our method achieves a remarkable accuracy of 96.1%, outperforming current text classification models. Through the utilization of our generated fake cybersecurity threat intelligence, we successfully mimic data poisoning attacks within open-source communities. When paired with our detection model, this research not only improves detection accuracy but also provides a powerful tool for enhancing the security and integrity of open-source ecosystems.","PeriodicalId":508238,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"22 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijswis.350095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to overcome the challenges of inadequate classification accuracy in existing fake cybersecurity threat intelligence mining methods and the lack of high-quality public datasets for training classification models, we propose a novel approach that significantly advances the field. We improved the attention mechanism and designed a generative adversarial network based on the improved attention mechanism to generate fake cybersecurity threat intelligence. Additionally, we refine text tokenization techniques and design a detection model to detect fake cybersecurity threats intelligence. Using our STIX-CTIs dataset, our method achieves a remarkable accuracy of 96.1%, outperforming current text classification models. Through the utilization of our generated fake cybersecurity threat intelligence, we successfully mimic data poisoning attacks within open-source communities. When paired with our detection model, this research not only improves detection accuracy but also provides a powerful tool for enhancing the security and integrity of open-source ecosystems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开源社区中虚假网络安全威胁情报的网络语义挖掘方法
为了克服现有虚假网络安全威胁情报挖掘方法分类准确性不足和缺乏高质量公共数据集来训练分类模型的难题,我们提出了一种新方法,大大推动了该领域的发展。我们改进了注意力机制,并在改进的注意力机制基础上设计了生成式对抗网络,以生成虚假网络安全威胁情报。此外,我们还改进了文本标记化技术,并设计了一个检测模型来检测虚假网络安全威胁情报。利用 STIX-CTIs 数据集,我们的方法取得了 96.1% 的显著准确率,优于当前的文本分类模型。通过利用我们生成的虚假网络安全威胁情报,我们成功地模仿了开源社区内的数据中毒攻击。当与我们的检测模型搭配使用时,这项研究不仅提高了检测准确率,还为增强开源生态系统的安全性和完整性提供了强有力的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semantic Web Insights Into the Classification of Folk Paper-Cut Cultural Genes A Web Semantic Mining Method for Fake Cybersecurity Threat Intelligence in Open Source Communities Differential Feature Fusion, Triplet Global Attention, and Web Semantic for Pedestrian Detection A Secure Data E-Governance for Healthcare Application in Cyber Physical Systems A Review of Semantic Medical Image Segmentation Based on Different Paradigms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1