Characterization, Molecular Mechanism of Prochloraz-Resistance in Fusarium fujikuroi and Development of Loop-Mediated Isothermal Amplification Rapid Detection Technique Based on the S312T Genotype of Resistances

IF 4.2 2区 生物学 Q2 MICROBIOLOGY Journal of Fungi Pub Date : 2024-08-08 DOI:10.3390/jof10080560
Chenyang Ge, Daixing Dong, Chengxin Mao, Qianqian Zhang, Chuanqing Zhang
{"title":"Characterization, Molecular Mechanism of Prochloraz-Resistance in Fusarium fujikuroi and Development of Loop-Mediated Isothermal Amplification Rapid Detection Technique Based on the S312T Genotype of Resistances","authors":"Chenyang Ge, Daixing Dong, Chengxin Mao, Qianqian Zhang, Chuanqing Zhang","doi":"10.3390/jof10080560","DOIUrl":null,"url":null,"abstract":"Rice bakanae disease (RBD) is a typical seed-borne fungal disease caused by Fusarium fujikuroi. Prochloraz is a sterol demethylation inhibitor, which is among the most important classes of active ingredients for the management of RBD. In 2022, the total resistance frequency of F. fujikuroi to prochloraz in Zhejiang Province was 62.67%. The fitness of the prochloraz-resistant population was lower than that of the susceptible population, but its pathogenicity was slightly stronger. The S312T and F511S double mutations of Ffcyp51b were detected in the resistant isolates. Loop-mediated isothermal amplification (LAMP) technology based on S312T was established to rapidly determine prochloraz resistance in F. fujikuroi. LAMP primer mismatch design was performed based on the cyp51b gene, and 100–300 bp sequences containing a mutation at codon 312 were amplified. In a 25 µL reaction tube, 1 pg/µL DNA of F. fujikuroi could be detected. The detection limit for the frequency of prochloraz resistance was 0.498% using this method. We performed LAMP detection on rice seedlings inoculated with prochloraz-sensitive and -resistant isolates and treated them with prochloraz. Prochloraz demonstrated good control in rice seedlings. A chromogenic reaction was observed in seedlings treated with prochloraz-resistant isolates, and the results were verified using electrophoresis. It has been demonstrated that LAMP technology based on the S312T genotype can quickly and specifically detect prochloraz-resistant isolates in rice seedlings.","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof10080560","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Rice bakanae disease (RBD) is a typical seed-borne fungal disease caused by Fusarium fujikuroi. Prochloraz is a sterol demethylation inhibitor, which is among the most important classes of active ingredients for the management of RBD. In 2022, the total resistance frequency of F. fujikuroi to prochloraz in Zhejiang Province was 62.67%. The fitness of the prochloraz-resistant population was lower than that of the susceptible population, but its pathogenicity was slightly stronger. The S312T and F511S double mutations of Ffcyp51b were detected in the resistant isolates. Loop-mediated isothermal amplification (LAMP) technology based on S312T was established to rapidly determine prochloraz resistance in F. fujikuroi. LAMP primer mismatch design was performed based on the cyp51b gene, and 100–300 bp sequences containing a mutation at codon 312 were amplified. In a 25 µL reaction tube, 1 pg/µL DNA of F. fujikuroi could be detected. The detection limit for the frequency of prochloraz resistance was 0.498% using this method. We performed LAMP detection on rice seedlings inoculated with prochloraz-sensitive and -resistant isolates and treated them with prochloraz. Prochloraz demonstrated good control in rice seedlings. A chromogenic reaction was observed in seedlings treated with prochloraz-resistant isolates, and the results were verified using electrophoresis. It has been demonstrated that LAMP technology based on the S312T genotype can quickly and specifically detect prochloraz-resistant isolates in rice seedlings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
藤黄镰刀菌对 Prochloraz 抗性的特征、分子机制以及基于 S312T 抗性基因型的环介导等温扩增快速检测技术的开发
水稻白粉病(RBD)是由镰刀菌(Fusarium fujikuroi)引起的一种典型的种传真菌病害。丙环唑是一种甾醇脱甲基化抑制剂,是防治 RBD 的最重要的有效成分之一。2022 年,浙江省的 F. fujikuroi 对丙环唑的总抗性频率为 62.67%。抗丙草胺种群的健壮性低于易感种群,但致病性稍强。在抗性分离株中检测到了 Ffcyp51b 的 S312T 和 F511S 双突变。建立了基于 S312T 的环介导等温扩增(LAMP)技术,以快速确定 F. fujikuroi 对丙草胺的抗性。LAMP 引物错配设计以 cyp51b 基因为基础,扩增含有密码子 312 突变的 100-300 bp 序列。在 25 µL 的反应管中,可以检测到 1 pg/µL 的 F. fujikuroi DNA。使用这种方法,对丙草胺抗性频率的检测限为 0.498%。我们对接种了对丙草胺敏感和抗性分离株的水稻秧苗进行了 LAMP 检测,并用丙草胺对其进行了处理。丙环唑对水稻秧苗有很好的控制作用。抗丙草胺分离物处理过的秧苗出现了显色反应,电泳结果得到了验证。结果表明,基于 S312T 基因型的 LAMP 技术可以快速、特异地检测出水稻秧苗中的抗丙草胺分离物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Fungi
Journal of Fungi Medicine-Microbiology (medical)
CiteScore
6.70
自引率
14.90%
发文量
1151
审稿时长
11 weeks
期刊介绍: Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Characterization of a High-Affinity Copper Transporter CTR1a in the White-Nose Syndrome Causing Fungal Pathogen Pseudogymnoascus destructans. Diversity and Antifungal Susceptibilities of Yeasts from Mangroves in Hong Kong, China-A One Health Aspect. Recent Advances in Diagnostic Approaches for Mucormycosis. Exogenous Nitric Oxide Induces Pathogenicity of Alternaria alternata on Huangguan Pear Fruit by Regulating Reactive Oxygen Species Metabolism and Cell Wall Modification. Three New Species of Mytilinidioid Fungi (Dothideomycetes, Ascomycota) from Mexico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1