Enabling High-Degree-of-Freedom Thermal Engineering Calculations via Lightweight Machine Learning

IF 3 4区 工程技术 Q3 ENERGY & FUELS Energies Pub Date : 2024-08-08 DOI:10.3390/en17163916
Yajing Tian, Yuyang Wang, Shasha Yin, Jia Lu, Yu Hu
{"title":"Enabling High-Degree-of-Freedom Thermal Engineering Calculations via Lightweight Machine Learning","authors":"Yajing Tian, Yuyang Wang, Shasha Yin, Jia Lu, Yu Hu","doi":"10.3390/en17163916","DOIUrl":null,"url":null,"abstract":"U-tube steam generators (UTSGs) are crucial in nuclear power plants, serving as the interface between the primary and secondary coolant loops. UTSGs ensure efficient heat exchange, operational stability, and safety, directly impacting the plant’s efficiency and reliability. Existing UTSG models have fixed structures, which can only be used when certain parameters are given as model input. Such constraints hinder their ability to accommodate the diverse operating conditions, where input and output parameters can vary significantly. To address this challenge, we propose a machine learning-based method for developing a high-degree-of-freedom UTSG thermal model. The most notable feature of this approach is its capacity to flexibly interchange input and output parameters. By adopting comprehensive parameter sensitivity analysis, the most efficient method for training dataset generation is determined. Leveraging a lightweight machine learning method, the prediction accuracy for all UTSG parameters is improved to within 2.1%. The flexibility of the proposed machine learning approach ensures that the UTSG model can accommodate any type of parameter input without extensive reconfiguration of the model structure, thereby enhancing its applicability and robustness in real-world applications.","PeriodicalId":11557,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17163916","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

U-tube steam generators (UTSGs) are crucial in nuclear power plants, serving as the interface between the primary and secondary coolant loops. UTSGs ensure efficient heat exchange, operational stability, and safety, directly impacting the plant’s efficiency and reliability. Existing UTSG models have fixed structures, which can only be used when certain parameters are given as model input. Such constraints hinder their ability to accommodate the diverse operating conditions, where input and output parameters can vary significantly. To address this challenge, we propose a machine learning-based method for developing a high-degree-of-freedom UTSG thermal model. The most notable feature of this approach is its capacity to flexibly interchange input and output parameters. By adopting comprehensive parameter sensitivity analysis, the most efficient method for training dataset generation is determined. Leveraging a lightweight machine learning method, the prediction accuracy for all UTSG parameters is improved to within 2.1%. The flexibility of the proposed machine learning approach ensures that the UTSG model can accommodate any type of parameter input without extensive reconfiguration of the model structure, thereby enhancing its applicability and robustness in real-world applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过轻量级机器学习实现高自由度热工计算
U 型管蒸汽发生器(UTSG)是核电站的关键设备,是一次冷却剂回路和二次冷却剂回路之间的接口。UTSG 确保高效的热交换、运行稳定性和安全性,直接影响核电站的效率和可靠性。现有的 UTSG 模型结构固定,只有在输入特定参数时才能使用。这种限制妨碍了它们适应不同运行条件的能力,因为在这些条件下,输入和输出参数可能会有很大的变化。为了应对这一挑战,我们提出了一种基于机器学习的方法,用于开发高自由度 UTSG 热模型。这种方法最显著的特点是能够灵活地互换输入和输出参数。通过全面的参数敏感性分析,确定了最有效的训练数据集生成方法。利用轻量级机器学习方法,UTSG 所有参数的预测精度提高到了 2.1% 以内。所提出的机器学习方法的灵活性确保了UTSG 模型能够适应任何类型的参数输入,而无需对模型结构进行大量重新配置,从而增强了其在实际应用中的适用性和稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energies
Energies ENERGY & FUELS-
CiteScore
6.20
自引率
21.90%
发文量
8045
审稿时长
1.9 months
期刊介绍: Energies (ISSN 1996-1073) is an open access journal of related scientific research, technology development and policy and management studies. It publishes reviews, regular research papers, and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Transforming Abandoned Hydrocarbon Fields into Heat Storage Solutions: A Hungarian Case Study Using Enhanced Multi-Criteria Decision Analysis–Analytic Hierarchy Process and Geostatistical Methods Bibliometric Analysis of Multi-Criteria Decision-Making (MCDM) Methods in Environmental and Energy Engineering Using CiteSpace Software: Identification of Key Research Trends and Patterns of International Cooperation Readiness of Malaysian PV System to Utilize Energy Storage System with Second-Life Electric Vehicle Batteries Optimal Configuration Method of Primary and Secondary Integrated Intelligent Switches in the Active Distribution Network Considering Comprehensive Fault Observability Effect of Exhaust Gas Recirculation on Combustion Characteristics of Ultra-Low-Sulfur Diesel in Conventional and PPCI Regimes for a High-Compression-Ratio Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1