{"title":"The Hydrochemical Characteristics and Formation Mechanism of Highly Mineralized Coal Mine Water in Semi-Arid Regions in Northwest China","authors":"Jian Yang, Wei Zhao, Xiangyang Liang, Feng Xu","doi":"10.3390/w16162244","DOIUrl":null,"url":null,"abstract":"The over-exploitation of groundwater and the deterioration of its quality have heightened the importance of non-traditional water resources, such as mine water. The study of the water’s chemical characteristics and the formation mechanism of high-salinity mine water in semi-arid regions holds significant importance for zero discharge and the resource utilization of mine water in Northwest China. In this study, a total of 38 groundwater and mine water samples were collected to examine the hydrogeochemical characteristics of high-salinity mine water using Piper diagrams and Gibbs diagrams, as well as isotope analyses and ion ratio coefficients. Additionally, the corresponding mine water treatment recommendations were put forward. The results show that the TDS content of groundwater increases with hydrographic depth. The average TDS concentration of Quaternary, Luohe, and Anding groundwater is 336.87, 308.67, and 556.29 mg/L, respectively. However, the TDS concentration of Zhiluo groundwater and mine water is 2768.57 and 3826.40 mg/L, respectively, which belong to high-salinity water. The Quaternary, Luohe, and Anding groundwater hydrochemical type is predominantly HCO3-Ca type, and the Zhiluo groundwater and mine water hydrochemical type is predominantly the SO4-Na type. Furthermore, there is minimal difference observed in δD and δ18O values among these waters. It can be inferred that the Zhiluo Formation in groundwater serves as the primary source of mine water supply, primarily influenced by the processes of concentration caused by evaporation. The high salinity of mine water is closely related to the high salinity of Zhiluo groundwater. The high salinity of groundwater has evolved gradually under the control of the concentration caused by evaporation and rock-weathering processes. The dissolution of salt rock, gypsum, along with other minerals, serves as the material basis for high-salinity groundwater formation. In addition, the evolution of major ions is also affected by cation exchange. The TDS concentration of mine water ranges from 3435.4 mg/L to 4414.3 mg/L, and the combined treatment process of nanofiltration and reverse osmosis can be selected to remove the salt. After treatment, mine water can be used for productive, domestic, and ecological demands.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"48 18","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/w16162244","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The over-exploitation of groundwater and the deterioration of its quality have heightened the importance of non-traditional water resources, such as mine water. The study of the water’s chemical characteristics and the formation mechanism of high-salinity mine water in semi-arid regions holds significant importance for zero discharge and the resource utilization of mine water in Northwest China. In this study, a total of 38 groundwater and mine water samples were collected to examine the hydrogeochemical characteristics of high-salinity mine water using Piper diagrams and Gibbs diagrams, as well as isotope analyses and ion ratio coefficients. Additionally, the corresponding mine water treatment recommendations were put forward. The results show that the TDS content of groundwater increases with hydrographic depth. The average TDS concentration of Quaternary, Luohe, and Anding groundwater is 336.87, 308.67, and 556.29 mg/L, respectively. However, the TDS concentration of Zhiluo groundwater and mine water is 2768.57 and 3826.40 mg/L, respectively, which belong to high-salinity water. The Quaternary, Luohe, and Anding groundwater hydrochemical type is predominantly HCO3-Ca type, and the Zhiluo groundwater and mine water hydrochemical type is predominantly the SO4-Na type. Furthermore, there is minimal difference observed in δD and δ18O values among these waters. It can be inferred that the Zhiluo Formation in groundwater serves as the primary source of mine water supply, primarily influenced by the processes of concentration caused by evaporation. The high salinity of mine water is closely related to the high salinity of Zhiluo groundwater. The high salinity of groundwater has evolved gradually under the control of the concentration caused by evaporation and rock-weathering processes. The dissolution of salt rock, gypsum, along with other minerals, serves as the material basis for high-salinity groundwater formation. In addition, the evolution of major ions is also affected by cation exchange. The TDS concentration of mine water ranges from 3435.4 mg/L to 4414.3 mg/L, and the combined treatment process of nanofiltration and reverse osmosis can be selected to remove the salt. After treatment, mine water can be used for productive, domestic, and ecological demands.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico