Tanja Novak, Christopher R. Bridges, Matt Naylor, Dawit Yemane, Lutz Auerswald
{"title":"Acute Hypercapnia at South African Abalone Farms and Its Physiological and Commercial Consequences","authors":"Tanja Novak, Christopher R. Bridges, Matt Naylor, Dawit Yemane, Lutz Auerswald","doi":"10.3390/fishes9080313","DOIUrl":null,"url":null,"abstract":"Abalone Haliotis midae are distributed from the cold, hypercapnic waters of the dynamic Benguela Current Large Marine Ecosystem to the relatively warm, normocapnic waters of the Agulhas Current. The species supports an important fishery as well as a thriving aquaculture industry. Due to the relatively low capacity to regulate their acid–base balance and their need to calcify shell and radula, abalone are especially vulnerable to increasing ocean acidification. Exposure to acidified seawater, i.e., hypercapnia, also occurs during the farming operation and can originate from (a) changes in influent seawater, (b) pH decrease by accumulation of waste products, and (c) intentional hypercapnia for anaesthesia using CO2-saturated seawater for size grading. Currently, these are acute exposures to hypercapnia, but increasing ocean acidification can cause chronic exposure, if not mitigated. Wild South African abalone are already exposed to periodic hypercapnia during ocean upwelling events and will be more so in the future due to progressive ocean acidification. This study investigated the acute pH effects in isolation as an initial step in studying the acute physiological response of H. midae to provide a mechanistic basis for the design of complex multifactorial studies, imitating more closely what occurs on farms and in the natural habitat. The major findings relevant to the above conditions are as follows: 1. Acute exposure to hypercapnia induces a reversible, unbuffered respiratory acidosis. 2. The impact of acute hypercapnia is size-dependent and potentially fatal. 3. Exposure to extreme, short hypercapnia during anaesthesia causes a rapid imbalance in the acid–base state but a rapid subsequent recovery. LC50 for small, medium and large abalone range from pH 6.27 to 6.03, respectively, and sub-lethal levels from pH 6.8 to 6.2. These results can be used by abalone aquaculture farms to mitigate/avoid the impact of acute (and chronic) hypercapnia but also to standardise their anaesthesia method. They are also a proxy to estimate the effects on wild populations.","PeriodicalId":505604,"journal":{"name":"Fishes","volume":"56 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fishes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fishes9080313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abalone Haliotis midae are distributed from the cold, hypercapnic waters of the dynamic Benguela Current Large Marine Ecosystem to the relatively warm, normocapnic waters of the Agulhas Current. The species supports an important fishery as well as a thriving aquaculture industry. Due to the relatively low capacity to regulate their acid–base balance and their need to calcify shell and radula, abalone are especially vulnerable to increasing ocean acidification. Exposure to acidified seawater, i.e., hypercapnia, also occurs during the farming operation and can originate from (a) changes in influent seawater, (b) pH decrease by accumulation of waste products, and (c) intentional hypercapnia for anaesthesia using CO2-saturated seawater for size grading. Currently, these are acute exposures to hypercapnia, but increasing ocean acidification can cause chronic exposure, if not mitigated. Wild South African abalone are already exposed to periodic hypercapnia during ocean upwelling events and will be more so in the future due to progressive ocean acidification. This study investigated the acute pH effects in isolation as an initial step in studying the acute physiological response of H. midae to provide a mechanistic basis for the design of complex multifactorial studies, imitating more closely what occurs on farms and in the natural habitat. The major findings relevant to the above conditions are as follows: 1. Acute exposure to hypercapnia induces a reversible, unbuffered respiratory acidosis. 2. The impact of acute hypercapnia is size-dependent and potentially fatal. 3. Exposure to extreme, short hypercapnia during anaesthesia causes a rapid imbalance in the acid–base state but a rapid subsequent recovery. LC50 for small, medium and large abalone range from pH 6.27 to 6.03, respectively, and sub-lethal levels from pH 6.8 to 6.2. These results can be used by abalone aquaculture farms to mitigate/avoid the impact of acute (and chronic) hypercapnia but also to standardise their anaesthesia method. They are also a proxy to estimate the effects on wild populations.