{"title":"Ecofriendly synthesis of PdNPs using Eupatorium adenophorum leaf extract and their catalytic properties","authors":"Sagiraju Shashank Dutt, Bhagavanth Reddy Gangapuram, Izhar Ahmed, Surendar Reddy Jakka, Radha Krishna Reddy Mardi, Kondaiah Seku","doi":"10.1007/s11164-024-05369-4","DOIUrl":null,"url":null,"abstract":"<div><p>This study reported the synthesis of well-dispersed palladium nanoparticles (PdNPs) using microwaves. Additionally, this method is quick, cheap, chemical-free, and environmentally friendly. The Eupatorium adenophorum aqueous extract, which contains polysaccharides and other phytochemicals, effectively reduced and stabilized PdNPs. We have preliminarily confirmed that PdNPs form via UV–visible spectroscopy and proposed a mechanism of PdNPs formation via Fourier transform infrared spectroscopy. EA-PdNPs have a face-centred cubic structure, as confirmed by XRD analysis. The images obtained by transmission electron microscopy showed spherical PdNPs whose average size was 11 ± 2 nm. EA-PdNPs showed good catalytic activity towards the reduction of methylene blue (MB), congo red (CR) dyes, and 4-nitrophenol (4-NP). It was found that EA-PdNPs showed a reduction efficiency of 94% against MB, CR, and 4-NP dyes even after five cycles. EA-PdNPs are anticipated to contribute to environmental water remediation significantly.</p><h3>Graphical abstract</h3><p>Schematic representation of the synthesis of EA-PdNPs and their catalytic applications</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":753,"journal":{"name":"Research on Chemical Intermediates","volume":"50 9","pages":"4447 - 4464"},"PeriodicalIF":2.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research on Chemical Intermediates","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11164-024-05369-4","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study reported the synthesis of well-dispersed palladium nanoparticles (PdNPs) using microwaves. Additionally, this method is quick, cheap, chemical-free, and environmentally friendly. The Eupatorium adenophorum aqueous extract, which contains polysaccharides and other phytochemicals, effectively reduced and stabilized PdNPs. We have preliminarily confirmed that PdNPs form via UV–visible spectroscopy and proposed a mechanism of PdNPs formation via Fourier transform infrared spectroscopy. EA-PdNPs have a face-centred cubic structure, as confirmed by XRD analysis. The images obtained by transmission electron microscopy showed spherical PdNPs whose average size was 11 ± 2 nm. EA-PdNPs showed good catalytic activity towards the reduction of methylene blue (MB), congo red (CR) dyes, and 4-nitrophenol (4-NP). It was found that EA-PdNPs showed a reduction efficiency of 94% against MB, CR, and 4-NP dyes even after five cycles. EA-PdNPs are anticipated to contribute to environmental water remediation significantly.
Graphical abstract
Schematic representation of the synthesis of EA-PdNPs and their catalytic applications
期刊介绍:
Research on Chemical Intermediates publishes current research articles and concise dynamic reviews on the properties, structures and reactivities of intermediate species in all the various domains of chemistry.
The journal also contains articles in related disciplines such as spectroscopy, molecular biology and biochemistry, atmospheric and environmental sciences, catalysis, photochemistry and photophysics. In addition, special issues dedicated to specific topics in the field are regularly published.