Pub Date : 2024-11-18DOI: 10.1007/s11164-024-05442-y
Sinaz Padyav, Mohsen Ghorbani, Soodabeh khalili
Due to a worldwide shortage of water resources, removing dye pollutants from water is widely regarded as a crucial concern. Consequently, photocatalysis is gaining recognition as a viable approach for the treatment of water. In this study, Polyaniline/Bi2S3/NiFe2O4 nanocomposite is prepared by the coprecipitation method for the photodegradation of indigo carmine (IC) dye. The prepared samples are then examined via FTIR, XRD, TEM, SEM, VSM, PL, and DRS techniques. In the second part of the research, a thorough examination is conducted on the influence of photocatalyst dosage (0.1–1 g/L), initial concentration and pH (2–9), of dye solution (10–50 mg/L) on the photocatalytic degradation of IC dye under visible light irradiation. Results indicate that reducing pH, increasing time, and dosage of photocatalyst indicate a positive impact on dye removal efficiency. So that in the optimal conditions of pH = 2 with 0.5 g/L of photocatalyst in 10 mg/L of pollution solution, the highest efficiency of photocatalytic removal of IC dye is obtained 96.01%. In addition, the nanocomposite maintains 78.19% activity after four consecutive cycles. Based on the photocurrent and EIS Spectroscopy analyses, the enhanced photocatalytic efficiency of the Polyaniline/Bi2S3/NiFe2O4 nanocomposite can be ascribed to the expeditious separation and migration of electron–hole pairs and a lower charge transfer resistance. Finally, using the simplified Langmuir–Hinshelwood equation (first-order model) in kinetic studies recommended that the employed model is appropriate for precisely explaining the experimental data accurately.
{"title":"Synthesis of ternary Polyaniline/Bi2S3/NiFe2O4 nanocomposite: as a magnetic separable, reusable, and visible light-responsive photocatalyst for degradation of indigo carmine dye","authors":"Sinaz Padyav, Mohsen Ghorbani, Soodabeh khalili","doi":"10.1007/s11164-024-05442-y","DOIUrl":"10.1007/s11164-024-05442-y","url":null,"abstract":"<p>Due to a worldwide shortage of water resources, removing dye pollutants from water is widely regarded as a crucial concern. Consequently, photocatalysis is gaining recognition as a viable approach for the treatment of water. In this study, Polyaniline/Bi<sub>2</sub>S<sub>3</sub>/NiFe<sub>2</sub>O<sub>4</sub> nanocomposite is prepared by the coprecipitation method for the photodegradation of indigo carmine (IC) dye. The prepared samples are then examined via FTIR, XRD, TEM, SEM, VSM, PL, and DRS techniques. In the second part of the research, a thorough examination is conducted on the influence of photocatalyst dosage (0.1–1 g/L), initial concentration and pH (2–9), of dye solution (10–50 mg/L) on the photocatalytic degradation of IC dye under visible light irradiation. Results indicate that reducing pH, increasing time, and dosage of photocatalyst indicate a positive impact on dye removal efficiency. So that in the optimal conditions of pH = 2 with 0.5 g/L of photocatalyst in 10 mg/L of pollution solution, the highest efficiency of photocatalytic removal of IC dye is obtained 96.01%. In addition, the nanocomposite maintains 78.19% activity after four consecutive cycles. Based on the photocurrent and EIS Spectroscopy analyses, the enhanced photocatalytic efficiency of the Polyaniline/Bi<sub>2</sub>S<sub>3</sub>/NiFe<sub>2</sub>O<sub>4</sub> nanocomposite can be ascribed to the expeditious separation and migration of electron–hole pairs and a lower charge transfer resistance. Finally, using the simplified Langmuir–Hinshelwood equation (first-order model) in kinetic studies recommended that the employed model is appropriate for precisely explaining the experimental data accurately.</p>","PeriodicalId":753,"journal":{"name":"Research on Chemical Intermediates","volume":"50 12","pages":"5937 - 5961"},"PeriodicalIF":2.8,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1007/s11164-024-05434-y
Suzaimi Johari, Mohd Rafie Johan, Nader Ghaffari Khaligh
The synthesis of ethyl (hetero)arylidene cyanoacetates, valuable intermediates in organic chemistry, has been investigated using several commercially available and synthetic nitrogen-based organocatalysts. 4,4′-Trimethylenedipiperidine (TMDP) was chosen as an efficient organocatalyst regarding short reaction times, excellent yield with a conversion of 100%, and high selectivity. The pure products could be isolated and devoid of a costly workup. The residue could be directly reused for the next catalytic run. Encouragingly, TMDP exhibited chemical stability and high recyclability in five subsequent runs without a significant loss in catalytic activity. Scale-up experiments also demonstrate the current strategy’s promising industrial application. Mechanistic studies were conducted to provide insights into the reaction pathways and possible interaction/reaction between organocatalyst and each reactant through performing control experiments and studying FTIR in neat state and NMR spectra in aprotic and protic deuterated solvents. The developed metal-free and halogen-free catalytic strategy offers cost-effectiveness, low toxicity, and enhanced sustainability.