Federated-Learning Intrusion Detection System Based Blockchain Technology

Ahmed Almaghthawi, Ebrahim A. A. Ghaleb, Nur Arifin Akbar, Layla Asiri, Meaad Alrehaili, Askar Altalidi
{"title":"Federated-Learning Intrusion Detection System Based Blockchain Technology","authors":"Ahmed Almaghthawi, Ebrahim A. A. Ghaleb, Nur Arifin Akbar, Layla Asiri, Meaad Alrehaili, Askar Altalidi","doi":"10.3991/ijoe.v20i11.49949","DOIUrl":null,"url":null,"abstract":"This study presents the implementation of a blockchain-based federated-learning (FL) intrusion detection system. This approach utilizes machine learning (ML) instead of traditional signature-based methods, enabling the system to detect new attack types. The FL technique ensures the privacy of sensitive data while still utilizing the large amounts of data distributed across client devices. To achieve this, we employed the federated averaging method and incorporated a custom preprocessing stage for data standardization. The use of blockchain technology in combination with FL created a fully decentralized and open learning system capable of overcoming new security challenges.","PeriodicalId":507997,"journal":{"name":"International Journal of Online and Biomedical Engineering (iJOE)","volume":"41 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Online and Biomedical Engineering (iJOE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijoe.v20i11.49949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the implementation of a blockchain-based federated-learning (FL) intrusion detection system. This approach utilizes machine learning (ML) instead of traditional signature-based methods, enabling the system to detect new attack types. The FL technique ensures the privacy of sensitive data while still utilizing the large amounts of data distributed across client devices. To achieve this, we employed the federated averaging method and incorporated a custom preprocessing stage for data standardization. The use of blockchain technology in combination with FL created a fully decentralized and open learning system capable of overcoming new security challenges.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于区块链技术的联盟学习入侵检测系统
本研究介绍了基于区块链的联合学习(FL)入侵检测系统的实施。这种方法利用机器学习(ML)代替传统的基于签名的方法,使系统能够检测到新的攻击类型。FL 技术在确保敏感数据隐私的同时,还能利用分布在客户端设备上的大量数据。为实现这一目标,我们采用了联合平均法,并加入了一个自定义预处理阶段,以实现数据标准化。区块链技术与 FL 的结合使用创建了一个完全去中心化的开放式学习系统,能够克服新的安全挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
XAI-PhD: Fortifying Trust of Phishing URL Detection Empowered by Shapley Additive Explanations Improving the Accuracy of Oncology Diagnosis: A Machine Learning-Based Approach to Cancer Prediction Social Robots, Mindfulness, and Kindergarten Blockchain of Things for Securing and Managing Water 4.0 Applications Intelligent Interconnected Healthcare System: Integrating IoT and Big Data for Personalized Patient Care
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1