Unveiling the Mechanisms for Campylobacter jejuni Biofilm Formation Using a Stochastic Mathematical Model

Hygiene Pub Date : 2024-08-08 DOI:10.3390/hygiene4030026
Paulina A. Dzianach, Gary A. Dykes, N. Strachan, Ken J. Forbes, F. Pérez-Reche
{"title":"Unveiling the Mechanisms for Campylobacter jejuni Biofilm Formation Using a Stochastic Mathematical Model","authors":"Paulina A. Dzianach, Gary A. Dykes, N. Strachan, Ken J. Forbes, F. Pérez-Reche","doi":"10.3390/hygiene4030026","DOIUrl":null,"url":null,"abstract":"Campylobacter jejuni plays a significant role in human health, food production, and veterinary practice. Biofilm formation is a likely mechanism explaining the survival of C. jejuni in seemingly unfavourable environments, but the underlying mechanisms are poorly understood. We propose a mathematical model to unify various observations regarding C. jejuni biofilm formation. Specifically, we present a cellular automaton with stochastic dynamics that describes both the probability of biofilm initiation and its subsequent growth. Our model incorporates fundamental processes such as cell rearrangement, diffusion of chemical compounds, accumulation of extracellular material, cell growth, lysis, and deactivation due to nutrient scarcity. The model predicts an optimal nutrient concentration that enhances population survival, revealing a trade-off where higher nutrient levels may harm individual cells but benefit the overall population. Our results suggest that the lower biofilm accumulation observed experimentally in aerobic conditions compared to microaerobic conditions may be due to a reduced surface invasion probability of individual cells. However, cells that do manage to invade can generate microcolonies of a similar size under both aerobic and microaerobic conditions. These findings provide new insights into the survival probability and size of C. jejuni biofilms, suggesting potential targets for controlling its biofilm formation in various environments.","PeriodicalId":513294,"journal":{"name":"Hygiene","volume":"47 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hygiene","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hygiene4030026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Campylobacter jejuni plays a significant role in human health, food production, and veterinary practice. Biofilm formation is a likely mechanism explaining the survival of C. jejuni in seemingly unfavourable environments, but the underlying mechanisms are poorly understood. We propose a mathematical model to unify various observations regarding C. jejuni biofilm formation. Specifically, we present a cellular automaton with stochastic dynamics that describes both the probability of biofilm initiation and its subsequent growth. Our model incorporates fundamental processes such as cell rearrangement, diffusion of chemical compounds, accumulation of extracellular material, cell growth, lysis, and deactivation due to nutrient scarcity. The model predicts an optimal nutrient concentration that enhances population survival, revealing a trade-off where higher nutrient levels may harm individual cells but benefit the overall population. Our results suggest that the lower biofilm accumulation observed experimentally in aerobic conditions compared to microaerobic conditions may be due to a reduced surface invasion probability of individual cells. However, cells that do manage to invade can generate microcolonies of a similar size under both aerobic and microaerobic conditions. These findings provide new insights into the survival probability and size of C. jejuni biofilms, suggesting potential targets for controlling its biofilm formation in various environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用随机数学模型揭示空肠弯曲杆菌生物膜的形成机制
空肠弯曲菌在人类健康、食品生产和兽医实践中发挥着重要作用。生物膜的形成很可能是空肠弯曲菌在看似不利的环境中存活的一种机制,但人们对其潜在的机制却知之甚少。我们提出了一个数学模型来统一有关空肠大肠杆菌生物膜形成的各种观察结果。具体来说,我们提出了一种具有随机动力学的细胞自动机,它可以描述生物膜的形成概率及其后续生长过程。我们的模型包含了细胞重新排列、化合物扩散、胞外物质积累、细胞生长、裂解和因营养缺乏而失活等基本过程。该模型预测了能提高种群存活率的最佳营养浓度,揭示了一种权衡关系,即较高的营养水平可能会损害单个细胞,但对整个种群有利。我们的研究结果表明,与微氧条件相比,在有氧条件下实验观察到的生物膜积累较低,这可能是由于单个细胞的表面入侵概率降低了。不过,在有氧和微氧条件下,成功入侵的细胞都能生成类似大小的微菌落。这些发现为空肠大肠杆菌生物膜的存活概率和大小提供了新的见解,为控制其在各种环境中形成生物膜提出了潜在的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unveiling the Mechanisms for Campylobacter jejuni Biofilm Formation Using a Stochastic Mathematical Model A Combined Cleaning and Disinfection Measure to Decontaminate Tire Treads from Tomato Brown Rugose Fruit Virus Contamination of High-Touch Surfaces in the Ophthalmic Clinical Environment—A Pilot Study Comparison of the Proteome of Staphylococcus aureus Planktonic Culture and 3-Day Biofilm Reveals Potential Role of Key Proteins in Biofilm Oral Hygiene Practices and Oral Health Knowledge among Adult Orthodontic Patients: A Best Practice Implementation Project
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1