Hyun J. Kwon, Joseph H. Shiu, C. K. Yamakawa, Elmer C. Rivera
{"title":"Enhancing Fermentation Process Monitoring through Data-Driven Modeling and Synthetic Time Series Generation","authors":"Hyun J. Kwon, Joseph H. Shiu, C. K. Yamakawa, Elmer C. Rivera","doi":"10.3390/bioengineering11080803","DOIUrl":null,"url":null,"abstract":"Soft sensors based on deep learning regression models are promising approaches to predict real-time fermentation process quality measurements. However, experimental datasets are generally sparse and may contain outliers or corrupted data. This leads to insufficient model prediction performance. Therefore, datasets with a fully distributed solution space are required that enable effective exploration during model training. In this study, the robustness and predictive capability of the underlying model of a soft sensor was improved by generating synthetic datasets for training. The monitoring of intensified ethanol fermentation is used as a case study. Variational autoencoders were employed to create synthetic datasets, which were then combined with original datasets (experimental) to train neural network regression models. These models were tested on original versus augmented datasets to assess prediction improvements. Using the augmented datasets, the soft sensor predictive capability improved by 34%, and variability was reduced by 82%, based on R2 scores. The proposed method offers significant time and cost savings for dataset generation for the deep learning modeling of ethanol fermentation and can be easily adapted to other fermentation processes. This work contributes to the advancement of soft sensor technology, providing practical solutions for enhancing reliability and robustness in large-scale production.","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11080803","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Soft sensors based on deep learning regression models are promising approaches to predict real-time fermentation process quality measurements. However, experimental datasets are generally sparse and may contain outliers or corrupted data. This leads to insufficient model prediction performance. Therefore, datasets with a fully distributed solution space are required that enable effective exploration during model training. In this study, the robustness and predictive capability of the underlying model of a soft sensor was improved by generating synthetic datasets for training. The monitoring of intensified ethanol fermentation is used as a case study. Variational autoencoders were employed to create synthetic datasets, which were then combined with original datasets (experimental) to train neural network regression models. These models were tested on original versus augmented datasets to assess prediction improvements. Using the augmented datasets, the soft sensor predictive capability improved by 34%, and variability was reduced by 82%, based on R2 scores. The proposed method offers significant time and cost savings for dataset generation for the deep learning modeling of ethanol fermentation and can be easily adapted to other fermentation processes. This work contributes to the advancement of soft sensor technology, providing practical solutions for enhancing reliability and robustness in large-scale production.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering