Enhancing Fermentation Process Monitoring through Data-Driven Modeling and Synthetic Time Series Generation

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL Bioengineering Pub Date : 2024-08-08 DOI:10.3390/bioengineering11080803
Hyun J. Kwon, Joseph H. Shiu, C. K. Yamakawa, Elmer C. Rivera
{"title":"Enhancing Fermentation Process Monitoring through Data-Driven Modeling and Synthetic Time Series Generation","authors":"Hyun J. Kwon, Joseph H. Shiu, C. K. Yamakawa, Elmer C. Rivera","doi":"10.3390/bioengineering11080803","DOIUrl":null,"url":null,"abstract":"Soft sensors based on deep learning regression models are promising approaches to predict real-time fermentation process quality measurements. However, experimental datasets are generally sparse and may contain outliers or corrupted data. This leads to insufficient model prediction performance. Therefore, datasets with a fully distributed solution space are required that enable effective exploration during model training. In this study, the robustness and predictive capability of the underlying model of a soft sensor was improved by generating synthetic datasets for training. The monitoring of intensified ethanol fermentation is used as a case study. Variational autoencoders were employed to create synthetic datasets, which were then combined with original datasets (experimental) to train neural network regression models. These models were tested on original versus augmented datasets to assess prediction improvements. Using the augmented datasets, the soft sensor predictive capability improved by 34%, and variability was reduced by 82%, based on R2 scores. The proposed method offers significant time and cost savings for dataset generation for the deep learning modeling of ethanol fermentation and can be easily adapted to other fermentation processes. This work contributes to the advancement of soft sensor technology, providing practical solutions for enhancing reliability and robustness in large-scale production.","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11080803","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Soft sensors based on deep learning regression models are promising approaches to predict real-time fermentation process quality measurements. However, experimental datasets are generally sparse and may contain outliers or corrupted data. This leads to insufficient model prediction performance. Therefore, datasets with a fully distributed solution space are required that enable effective exploration during model training. In this study, the robustness and predictive capability of the underlying model of a soft sensor was improved by generating synthetic datasets for training. The monitoring of intensified ethanol fermentation is used as a case study. Variational autoencoders were employed to create synthetic datasets, which were then combined with original datasets (experimental) to train neural network regression models. These models were tested on original versus augmented datasets to assess prediction improvements. Using the augmented datasets, the soft sensor predictive capability improved by 34%, and variability was reduced by 82%, based on R2 scores. The proposed method offers significant time and cost savings for dataset generation for the deep learning modeling of ethanol fermentation and can be easily adapted to other fermentation processes. This work contributes to the advancement of soft sensor technology, providing practical solutions for enhancing reliability and robustness in large-scale production.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过数据驱动建模和合成时间序列生成加强发酵过程监控
基于深度学习回归模型的软传感器是预测实时发酵过程质量测量的有前途的方法。然而,实验数据集通常比较稀疏,可能包含异常值或损坏数据。这导致模型预测性能不足。因此,需要具有完全分布式解空间的数据集,以便在模型训练过程中进行有效探索。在本研究中,通过生成合成数据集进行训练,提高了软传感器底层模型的鲁棒性和预测能力。本研究以强化乙醇发酵监测为案例。利用变异自动编码器创建合成数据集,然后将其与原始数据集(实验)相结合,训练神经网络回归模型。在原始数据集和增强数据集上对这些模型进行了测试,以评估预测的改进情况。根据 R2 分数,使用增强数据集后,软传感器的预测能力提高了 34%,可变性降低了 82%。所提出的方法为乙醇发酵深度学习建模的数据集生成节省了大量时间和成本,并可轻松适用于其他发酵过程。这项工作为软传感器技术的发展做出了贡献,为提高大规模生产的可靠性和稳健性提供了实用的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
期刊最新文献
A Scoping Review of 'Smart' Dressings for Diagnosing Surgical Site Infection: A Focus on Arthroplasty. Characterization of MSC Growth, Differentiation, and EV Production in CNF Hydrogels Under Static and Dynamic Cultures in Hypoxic and Normoxic Conditions. Mamba- and ResNet-Based Dual-Branch Network for Ultrasound Thyroid Nodule Segmentation. Exploring NRB Biofilm Adhesion and Biocorrosion in Oil/Water Recovery Operations Within Pipelines. Wearable Online Freezing of Gait Detection and Cueing System.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1