{"title":"Targeted delivery of nano-radiosensitizers for tumor radiotherapy","authors":"","doi":"10.1016/j.ccr.2024.216101","DOIUrl":null,"url":null,"abstract":"<div><p>Radiotherapy is a major tumor treatment approach in clinical, however, the use of high-dose X-rays during therapy inevitably causes damage to nearby healthy tissues, greatly reducing the efficacy and triggering a series of side effects. Advanced nano-radiosensitizers have enhanced tumor sensitivity to X-rays through the physical, chemical, or biological sensitization mechanisms. Nevertheless, they are still hindered by insufficient accumulation in tumors, preventing desired therapeutic effects. With the continuous progress of targeting technology, tumor-targeting delivery systems for nano-radiosensitizers have been developed, which significantly improve the accuracy and efficacy of radiation therapy targeting tumors. In this review article, we summarized the recently emerging strategies for targeting tumors with nano-radiosensitizers and introduced the fundamental principles of physical, chemical, and biological sensitization as well as the potential of targeting technology in radio-sensitization. The mechanisms behind targeted delivery of nano-radiosensitizers to tumors are also discussed from three perspectives: passive targeting, active targeting, and physicochemical targeting. We highlight both challenges and opportunities associated with achieving effective cancer radio-sensitization through targeted approaches, while providing valuable insights for developing novel tumor-targeted radiosensitizer agents and promoting clinical translation.</p></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":null,"pages":null},"PeriodicalIF":20.3000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010854524004478","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Radiotherapy is a major tumor treatment approach in clinical, however, the use of high-dose X-rays during therapy inevitably causes damage to nearby healthy tissues, greatly reducing the efficacy and triggering a series of side effects. Advanced nano-radiosensitizers have enhanced tumor sensitivity to X-rays through the physical, chemical, or biological sensitization mechanisms. Nevertheless, they are still hindered by insufficient accumulation in tumors, preventing desired therapeutic effects. With the continuous progress of targeting technology, tumor-targeting delivery systems for nano-radiosensitizers have been developed, which significantly improve the accuracy and efficacy of radiation therapy targeting tumors. In this review article, we summarized the recently emerging strategies for targeting tumors with nano-radiosensitizers and introduced the fundamental principles of physical, chemical, and biological sensitization as well as the potential of targeting technology in radio-sensitization. The mechanisms behind targeted delivery of nano-radiosensitizers to tumors are also discussed from three perspectives: passive targeting, active targeting, and physicochemical targeting. We highlight both challenges and opportunities associated with achieving effective cancer radio-sensitization through targeted approaches, while providing valuable insights for developing novel tumor-targeted radiosensitizer agents and promoting clinical translation.
放疗是临床上治疗肿瘤的主要方法,但在治疗过程中使用高剂量的X射线不可避免地会对附近的健康组织造成损伤,从而大大降低疗效,并引发一系列副作用。先进的纳米放射增敏剂通过物理、化学或生物增敏机制提高了肿瘤对 X 射线的敏感性。尽管如此,它们在肿瘤中的积累仍然不足,无法达到预期的治疗效果。随着靶向技术的不断进步,纳米放射增敏剂的肿瘤靶向给药系统应运而生,大大提高了肿瘤靶向放疗的准确性和有效性。在这篇综述文章中,我们总结了最近出现的纳米放射增敏剂靶向肿瘤的策略,介绍了物理、化学和生物增敏的基本原理以及靶向技术在放射增敏中的潜力。我们还从被动靶向、主动靶向和物理化学靶向三个角度讨论了纳米放射增敏剂靶向递送到肿瘤的机制。我们强调了通过靶向方法实现有效肿瘤放射增敏所面临的挑战和机遇,同时为开发新型肿瘤靶向放射增敏剂和促进临床转化提供了宝贵的见解。
期刊介绍:
Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers.
The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.