Perfect Information Monte Carlo with Postponing Reasoning

Jérôme Arjonilla, Abdallah Saffidine, Tristan Cazenave
{"title":"Perfect Information Monte Carlo with Postponing Reasoning","authors":"Jérôme Arjonilla, Abdallah Saffidine, Tristan Cazenave","doi":"arxiv-2408.02380","DOIUrl":null,"url":null,"abstract":"Imperfect information games, such as Bridge and Skat, present challenges due\nto state-space explosion and hidden information, posing formidable obstacles\nfor search algorithms. Determinization-based algorithms offer a resolution by\nsampling hidden information and solving the game in a perfect information\nsetting, facilitating rapid and effective action estimation. However,\ntransitioning to perfect information introduces challenges, notably one called\nstrategy fusion.This research introduces `Extended Perfect Information Monte\nCarlo' (EPIMC), an online algorithm inspired by the state-of-the-art\ndeterminization-based approach Perfect Information Monte Carlo (PIMC). EPIMC\nenhances the capabilities of PIMC by postponing the perfect information\nresolution, reducing alleviating issues related to strategy fusion. However,\nthe decision to postpone the leaf evaluator introduces novel considerations,\nsuch as the interplay between prior levels of reasoning and the newly deferred\nresolution. In our empirical analysis, we investigate the performance of EPIMC\nacross a range of games, with a particular focus on those characterized by\nvarying degrees of strategy fusion. Our results demonstrate notable performance\nenhancements, particularly in games where strategy fusion significantly impacts\ngameplay. Furthermore, our research contributes to the theoretical foundation\nof determinization-based algorithms addressing challenges associated with\nstrategy fusion.%, thereby enhancing our understanding of these algorithms\nwithin the context of imperfect information game scenarios.","PeriodicalId":501479,"journal":{"name":"arXiv - CS - Artificial Intelligence","volume":"15 Suppl 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Imperfect information games, such as Bridge and Skat, present challenges due to state-space explosion and hidden information, posing formidable obstacles for search algorithms. Determinization-based algorithms offer a resolution by sampling hidden information and solving the game in a perfect information setting, facilitating rapid and effective action estimation. However, transitioning to perfect information introduces challenges, notably one called strategy fusion.This research introduces `Extended Perfect Information Monte Carlo' (EPIMC), an online algorithm inspired by the state-of-the-art determinization-based approach Perfect Information Monte Carlo (PIMC). EPIMC enhances the capabilities of PIMC by postponing the perfect information resolution, reducing alleviating issues related to strategy fusion. However, the decision to postpone the leaf evaluator introduces novel considerations, such as the interplay between prior levels of reasoning and the newly deferred resolution. In our empirical analysis, we investigate the performance of EPIMC across a range of games, with a particular focus on those characterized by varying degrees of strategy fusion. Our results demonstrate notable performance enhancements, particularly in games where strategy fusion significantly impacts gameplay. Furthermore, our research contributes to the theoretical foundation of determinization-based algorithms addressing challenges associated with strategy fusion.%, thereby enhancing our understanding of these algorithms within the context of imperfect information game scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
完美信息蒙特卡洛与延迟推理
不完全信息博弈(如桥牌和 Skat)因状态空间爆炸和隐藏信息而面临挑战,给搜索算法带来了巨大障碍。基于确定性的算法提供了一种解决方案,即采样隐藏信息并在完美信息环境中求解博弈,从而促进快速有效的行动估计。本研究介绍了 "扩展完美信息蒙特卡洛"(EPIMC),这是一种在线算法,其灵感来自最先进的基于确定化的完美信息蒙特卡洛(PIMC)方法。EPIMC 通过推迟完美信息解析来增强 PIMC 的能力,从而减少与策略融合相关的问题。然而,推迟叶片评估器的决定引入了新的考虑因素,例如先前推理水平与新推迟的分辨率之间的相互作用。在实证分析中,我们研究了 EPIMC 在一系列博弈中的表现,尤其关注那些策略融合程度不同的博弈。我们的研究结果表明,EPIMC 的性能显著提高,尤其是在策略融合对游戏有重大影响的游戏中。此外,我们的研究为基于确定性的算法解决策略融合相关挑战奠定了理论基础,从而增强了我们对这些算法在不完全信息博弈场景下的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abductive explanations of classifiers under constraints: Complexity and properties Explaining Non-monotonic Normative Reasoning using Argumentation Theory with Deontic Logic Towards Explainable Goal Recognition Using Weight of Evidence (WoE): A Human-Centered Approach A Metric Hybrid Planning Approach to Solving Pandemic Planning Problems with Simple SIR Models Neural Networks for Vehicle Routing Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1