Explaining Non-monotonic Normative Reasoning using Argumentation Theory with Deontic Logic

Zhe Yu, Yiwei Lu
{"title":"Explaining Non-monotonic Normative Reasoning using Argumentation Theory with Deontic Logic","authors":"Zhe Yu, Yiwei Lu","doi":"arxiv-2409.11780","DOIUrl":null,"url":null,"abstract":"In our previous research, we provided a reasoning system (called LeSAC) based\non argumentation theory to provide legal support to designers during the design\nprocess. Building on this, this paper explores how to provide designers with\neffective explanations for their legally relevant design decisions. We extend\nthe previous system for providing explanations by specifying norms and the key\nlegal or ethical principles for justifying actions in normative contexts.\nConsidering that first-order logic has strong expressive power, in the current\npaper we adopt a first-order deontic logic system with deontic operators and\npreferences. We illustrate the advantages and necessity of introducing deontic\nlogic and designing explanations under LeSAC by modelling two cases in the\ncontext of autonomous driving. In particular, this paper also discusses the\nrequirements of the updated LeSAC to guarantee rationality, and proves that a\nwell-defined LeSAC can satisfy the rationality postulate for rule-based\nargumentation frameworks. This ensures the system's ability to provide\ncoherent, legally valid explanations for complex design decisions.","PeriodicalId":501479,"journal":{"name":"arXiv - CS - Artificial Intelligence","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In our previous research, we provided a reasoning system (called LeSAC) based on argumentation theory to provide legal support to designers during the design process. Building on this, this paper explores how to provide designers with effective explanations for their legally relevant design decisions. We extend the previous system for providing explanations by specifying norms and the key legal or ethical principles for justifying actions in normative contexts. Considering that first-order logic has strong expressive power, in the current paper we adopt a first-order deontic logic system with deontic operators and preferences. We illustrate the advantages and necessity of introducing deontic logic and designing explanations under LeSAC by modelling two cases in the context of autonomous driving. In particular, this paper also discusses the requirements of the updated LeSAC to guarantee rationality, and proves that a well-defined LeSAC can satisfy the rationality postulate for rule-based argumentation frameworks. This ensures the system's ability to provide coherent, legally valid explanations for complex design decisions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用论证理论与 Deontic Logic 解释非单调规范推理
在我们之前的研究中,我们提供了一个基于论证理论的推理系统(称为 LeSAC),在设计过程中为设计师提供法律支持。在此基础上,本文探讨了如何为设计者提供与法律相关的设计决策的有效解释。考虑到一阶逻辑具有很强的表达能力,本文采用了带有deontic操作符和偏好的一阶deontic逻辑系统。考虑到一阶逻辑具有很强的表达能力,我们在本文中采用了带有deontic算子和偏好的一阶deontic逻辑系统。我们通过模拟自动驾驶背景下的两个案例,说明了在LeSAC下引入deontic逻辑和设计解释的优势和必要性。本文还特别讨论了更新后的 LeSAC 在保证合理性方面的要求,并证明了定义明确的 LeSAC 可以满足基于规则的论证框架的合理性假设。这确保了该系统能够为复杂的设计决策提供连贯、合法的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abductive explanations of classifiers under constraints: Complexity and properties Explaining Non-monotonic Normative Reasoning using Argumentation Theory with Deontic Logic Towards Explainable Goal Recognition Using Weight of Evidence (WoE): A Human-Centered Approach A Metric Hybrid Planning Approach to Solving Pandemic Planning Problems with Simple SIR Models Neural Networks for Vehicle Routing Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1