Enhancing non-metallic gasket performance with shape memory fibers

IF 3 2区 工程技术 Q2 ENGINEERING, MECHANICAL International Journal of Pressure Vessels and Piping Pub Date : 2024-08-06 DOI:10.1016/j.ijpvp.2024.105288
Amin Ardali , Jafar Rouzegar , Soheil Mohammadi , Saeede Sharifnejad
{"title":"Enhancing non-metallic gasket performance with shape memory fibers","authors":"Amin Ardali ,&nbsp;Jafar Rouzegar ,&nbsp;Soheil Mohammadi ,&nbsp;Saeede Sharifnejad","doi":"10.1016/j.ijpvp.2024.105288","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to enhance the sealing performance of non-metallic gaskets by incorporating shape memory fibers. The analytical exploration focuses on analyzing the thermomechanical behavior of Nitinol fibers in their woven state within the gasket. Specifically, the investigation examines the variation of phase transformation zones across the wire cross-section with changes in temperature. Subsequently, a series of SMA fiber-reinforced gasket samples were fabricated, and experimental investigations were conducted to assess the impact of Nitinol fibers on composite gaskets using a helium gas leak test. The results demonstrate that the integration of shape memory alloy wires into the composition of gaskets can significantly improve their sealing performance. Moreover, this study examines a number of pivotal factors such as fiber volume fraction, temperature application, woven fiber arrangement, leakage rates, gasket deformation, contact stress, and structural bending. These comprehensive investigations may provide valuable insights into the efficacy of Nitinol fibers in enhancing gasket sealing performance.</p></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"211 ","pages":"Article 105288"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pressure Vessels and Piping","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308016124001650","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to enhance the sealing performance of non-metallic gaskets by incorporating shape memory fibers. The analytical exploration focuses on analyzing the thermomechanical behavior of Nitinol fibers in their woven state within the gasket. Specifically, the investigation examines the variation of phase transformation zones across the wire cross-section with changes in temperature. Subsequently, a series of SMA fiber-reinforced gasket samples were fabricated, and experimental investigations were conducted to assess the impact of Nitinol fibers on composite gaskets using a helium gas leak test. The results demonstrate that the integration of shape memory alloy wires into the composition of gaskets can significantly improve their sealing performance. Moreover, this study examines a number of pivotal factors such as fiber volume fraction, temperature application, woven fiber arrangement, leakage rates, gasket deformation, contact stress, and structural bending. These comprehensive investigations may provide valuable insights into the efficacy of Nitinol fibers in enhancing gasket sealing performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用形状记忆纤维提高非金属垫圈性能
本研究旨在通过加入形状记忆纤维来提高非金属垫片的密封性能。分析探索的重点是分析镍钛诺纤维在垫片内编织状态下的热机械行为。具体来说,该研究考察了整个金属丝横截面上的相变区随温度变化而产生的变化。随后,制作了一系列 SMA 纤维增强垫片样品,并进行了实验研究,利用氦气泄漏测试评估镍钛诺纤维对复合垫片的影响。结果表明,在垫片成分中加入形状记忆合金丝可以显著提高垫片的密封性能。此外,这项研究还考察了纤维体积分数、温度应用、编织纤维排列、泄漏率、垫片变形、接触应力和结构弯曲等一系列关键因素。这些全面的研究可为了解镍钛诺纤维在提高垫片密封性能方面的功效提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.30
自引率
13.30%
发文量
208
审稿时长
17 months
期刊介绍: Pressure vessel engineering technology is of importance in many branches of industry. This journal publishes the latest research results and related information on all its associated aspects, with particular emphasis on the structural integrity assessment, maintenance and life extension of pressurised process engineering plants. The anticipated coverage of the International Journal of Pressure Vessels and Piping ranges from simple mass-produced pressure vessels to large custom-built vessels and tanks. Pressure vessels technology is a developing field, and contributions on the following topics will therefore be welcome: • Pressure vessel engineering • Structural integrity assessment • Design methods • Codes and standards • Fabrication and welding • Materials properties requirements • Inspection and quality management • Maintenance and life extension • Ageing and environmental effects • Life management Of particular importance are papers covering aspects of significant practical application which could lead to major improvements in economy, reliability and useful life. While most accepted papers represent the results of original applied research, critical reviews of topical interest by world-leading experts will also appear from time to time. International Journal of Pressure Vessels and Piping is indispensable reading for engineering professionals involved in the energy, petrochemicals, process plant, transport, aerospace and related industries; for manufacturers of pressure vessels and ancillary equipment; and for academics pursuing research in these areas.
期刊最新文献
Study on the synergistic effect of welding residual stress and hydrogen diffusion on fatigue crack growth of X80 steel pipeline Two-step feature extraction of acoustic emission signals for leakage detection of valves in gas pipelines An adaptive spherical indentation test integrating targeted testing scenarios, data acquisition, and model selection for uniaxial mechanical property predictions Reverse deformation design for bending control in welding of ring stiffeners Analysis of the influence of clamp installation position on vibration stress for spatial pipeline
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1