Qian Zhang, Jie Wang, Tian-Xiang Lu, Ran Huang, Franco Nori, Hui Jing
{"title":"Quantum weak force sensing with squeezed magnomechanics","authors":"Qian Zhang, Jie Wang, Tian-Xiang Lu, Ran Huang, Franco Nori, Hui Jing","doi":"10.1007/s11433-024-2432-9","DOIUrl":null,"url":null,"abstract":"<div><p>Cavity magnomechanics, exhibiting remarkable experimental tunability, rich magnonic nonlinearities, and compatibility with various quantum systems, has witnessed considerable advances in recent years. However, the potential benefits of using cavity magnomechanical (CMM) systems in further improving the performance of quantum-enhanced sensing for weak forces remain largely unexplored. Here we show that, by squeezing the magnons, the performance of a quantum CMM sensor can be significantly enhanced beyond the standard quantum limit (SQL). We find that, for comparable parameters, two orders of magnitude enhancement in the force sensitivity can be achieved in comparison with the case without magnon squeezing. Moreover, we obtain the optimal parameter regimes of homodyne angle for minimizing the added quantum noise. Our findings provide a promising approach for highly tunable and compatible quantum force sensing using hybrid CMM devices, with potential applications ranging from quantum precision measurements to quantum information processing.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"67 10","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-024-2432-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cavity magnomechanics, exhibiting remarkable experimental tunability, rich magnonic nonlinearities, and compatibility with various quantum systems, has witnessed considerable advances in recent years. However, the potential benefits of using cavity magnomechanical (CMM) systems in further improving the performance of quantum-enhanced sensing for weak forces remain largely unexplored. Here we show that, by squeezing the magnons, the performance of a quantum CMM sensor can be significantly enhanced beyond the standard quantum limit (SQL). We find that, for comparable parameters, two orders of magnitude enhancement in the force sensitivity can be achieved in comparison with the case without magnon squeezing. Moreover, we obtain the optimal parameter regimes of homodyne angle for minimizing the added quantum noise. Our findings provide a promising approach for highly tunable and compatible quantum force sensing using hybrid CMM devices, with potential applications ranging from quantum precision measurements to quantum information processing.
期刊介绍:
Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of physics, mechanics and astronomy.
Brief reports present short reports in a timely manner of the latest important results.