Karishma Bhatia, Sandhya Tiwari, Vikas Kumar Gupta, Neerav M Sapariya, Sanjeev K Upadhyay
{"title":"An in vitro model of adipose tissue-associated macrophages","authors":"Karishma Bhatia, Sandhya Tiwari, Vikas Kumar Gupta, Neerav M Sapariya, Sanjeev K Upadhyay","doi":"10.1007/s12038-024-00464-5","DOIUrl":null,"url":null,"abstract":"<p>Obesity-related chronic low-grade inflammation plays a central role in the development of insulin resistance. Macrophages are key players in adipose tissue homeostasis, and their phenotypic shift from the anti-inflammatory or alternatively activated (M2) form to the pro-inflammatory, classically activated (M1) form is a hallmark of insulin resistance. However, adipose tissue macrophages (ATMs) have been identified as a distinct subpopulation of macrophages in several recent studies. These ATMs, described as metabolically activated macrophages (MMe), differ from M1 and are primarily found in the adipose tissue of obese individuals. In our study, we developed an <i>in vitro</i> model of MMe macrophages to establish a simple and reproducible system to understand their characteristics and role in the pathophysiology of insulin resistance. We examined their characteristics such as inflammatory patterns, surface markers, and metabolic features, and compared them with M1 and M2 macrophages. We found that a cell line-based <i>in vitro</i> model effectively mirrors the characteristics of ATMs, highlighting distinct inflammatory phenotypes, metabolism, surface markers, altered lysosomal activity, and ER stress akin to macrophages <i>in vivo</i>. This model captures the subtle distinctions between MMe and M1, and can be effectively used to study several features of macrophage–adipose interactions of therapeutic importance.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12038-024-00464-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Obesity-related chronic low-grade inflammation plays a central role in the development of insulin resistance. Macrophages are key players in adipose tissue homeostasis, and their phenotypic shift from the anti-inflammatory or alternatively activated (M2) form to the pro-inflammatory, classically activated (M1) form is a hallmark of insulin resistance. However, adipose tissue macrophages (ATMs) have been identified as a distinct subpopulation of macrophages in several recent studies. These ATMs, described as metabolically activated macrophages (MMe), differ from M1 and are primarily found in the adipose tissue of obese individuals. In our study, we developed an in vitro model of MMe macrophages to establish a simple and reproducible system to understand their characteristics and role in the pathophysiology of insulin resistance. We examined their characteristics such as inflammatory patterns, surface markers, and metabolic features, and compared them with M1 and M2 macrophages. We found that a cell line-based in vitro model effectively mirrors the characteristics of ATMs, highlighting distinct inflammatory phenotypes, metabolism, surface markers, altered lysosomal activity, and ER stress akin to macrophages in vivo. This model captures the subtle distinctions between MMe and M1, and can be effectively used to study several features of macrophage–adipose interactions of therapeutic importance.
期刊介绍:
The Journal of Biosciences is a quarterly journal published by the Indian Academy of Sciences, Bangalore. It covers all areas of Biology and is the premier journal in the country within its scope. It is indexed in Current Contents and other standard Biological and Medical databases. The Journal of Biosciences began in 1934 as the Proceedings of the Indian Academy of Sciences (Section B). This continued until 1978 when it was split into three parts : Proceedings-Animal Sciences, Proceedings-Plant Sciences and Proceedings-Experimental Biology. Proceedings-Experimental Biology was renamed Journal of Biosciences in 1979; and in 1991, Proceedings-Animal Sciences and Proceedings-Plant Sciences merged with it.