Brian E. Smith, Stefán Ragnarsson, Jeremy S. Collie
{"title":"Quantifying predation on benthos and its overlap with bottom fishing in the NW Atlantic","authors":"Brian E. Smith, Stefán Ragnarsson, Jeremy S. Collie","doi":"10.1111/fog.12696","DOIUrl":null,"url":null,"abstract":"Continental shelves experience many human pressures with demersal fisheries central to disturbing the ocean floor. However, ecological processes such as predation rates of benthos and their relationship with bottom fishing are often unknown for large marine ecosystems. We examined the amount of benthos consumed by 14 benthivorous fishes, the overlap between benthos predation and bottom fishing (dredge and trawl gear), and temporal trends in benthivorous fish abundance and the number of fishing trips on the northeast US continental shelf. Mean annual predation (biomass of prey removed) and 95% confidence intervals ranged from .0002 (.0001–.0003) to 3967 (1761–7112) t per 10‐min area squared grid cell and prey taxa for these benthivorous fishes. Predation and bottom fishing had overlapping footprints of activity, which were slightly stronger for dredge gear. Trophic success (ratio of prey biomass eaten to the biomass of the benthivore community per grid cell) revealed more Bivalvia, Gammaridea, and Polychaeta eaten in areas targeted by trawling with more fish biomass. In contrast, dredging did not target fish biomass, but these areas had increased (Echinoidea, Gammaridea, and other benthos) or decreased (Ophiuroidea) trophic success relative to dredging footprint, suggesting habitat preferences for benthic prey and demersal fisheries have converged rather than diverged. Despite declines in bottom fishing, recent increases in benthivorous fish abundance and growing interest in ocean floor use suggest that fisheries managers should ensure benthivores have sufficient prey resources relative to their community size and human pressures to promote long‐term sustainability of demersal fisheries and healthy ecosystems.","PeriodicalId":51054,"journal":{"name":"Fisheries Oceanography","volume":"103 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fisheries Oceanography","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/fog.12696","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
Continental shelves experience many human pressures with demersal fisheries central to disturbing the ocean floor. However, ecological processes such as predation rates of benthos and their relationship with bottom fishing are often unknown for large marine ecosystems. We examined the amount of benthos consumed by 14 benthivorous fishes, the overlap between benthos predation and bottom fishing (dredge and trawl gear), and temporal trends in benthivorous fish abundance and the number of fishing trips on the northeast US continental shelf. Mean annual predation (biomass of prey removed) and 95% confidence intervals ranged from .0002 (.0001–.0003) to 3967 (1761–7112) t per 10‐min area squared grid cell and prey taxa for these benthivorous fishes. Predation and bottom fishing had overlapping footprints of activity, which were slightly stronger for dredge gear. Trophic success (ratio of prey biomass eaten to the biomass of the benthivore community per grid cell) revealed more Bivalvia, Gammaridea, and Polychaeta eaten in areas targeted by trawling with more fish biomass. In contrast, dredging did not target fish biomass, but these areas had increased (Echinoidea, Gammaridea, and other benthos) or decreased (Ophiuroidea) trophic success relative to dredging footprint, suggesting habitat preferences for benthic prey and demersal fisheries have converged rather than diverged. Despite declines in bottom fishing, recent increases in benthivorous fish abundance and growing interest in ocean floor use suggest that fisheries managers should ensure benthivores have sufficient prey resources relative to their community size and human pressures to promote long‐term sustainability of demersal fisheries and healthy ecosystems.
期刊介绍:
The international journal of the Japanese Society for Fisheries Oceanography, Fisheries Oceanography is designed to present a forum for the exchange of information amongst fisheries scientists worldwide.
Fisheries Oceanography:
presents original research articles relating the production and dynamics of fish populations to the marine environment
examines entire food chains - not just single species
identifies mechanisms controlling abundance
explores factors affecting the recruitment and abundance of fish species and all higher marine tropic levels