Multiscale Spatial and Temporal Patterns of Distribution of Marine Fish Larvae—Patchiness and Predator–Prey Overlap

IF 1.9 2区 农林科学 Q2 FISHERIES Fisheries Oceanography Pub Date : 2024-11-26 DOI:10.1111/fog.12715
Peter Munk, Martin Lindegren
{"title":"Multiscale Spatial and Temporal Patterns of Distribution of Marine Fish Larvae—Patchiness and Predator–Prey Overlap","authors":"Peter Munk,&nbsp;Martin Lindegren","doi":"10.1111/fog.12715","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The distribution of fish larvae and other planktonic organisms is highly heterogenous and influenced by a complex interplay of physical, behavioural and ecological processes operating across different scales. Information on patterns and scale of resulting patchiness in plankton distributions is pivotal for understanding the bio-physical linkages, trophodynamics and ecological strategies in the marine pelagic environment. In this study, we examine the distribution and degree of patchiness of four fish larvae species and their copepod prey, placing specific emphasis on the scale of patterns in both horizontal and vertical dimensions. Our sampling effort encompassed a 120 km long transect of stations covering a frontal area in the southern North Sea, employing depth-stratified net sampling at varying station distances. Our results show distinct distributional patterns and migratory behaviours among different taxa of both larvae and their copepod prey, yet some commonalities were apparent. Across all species, we observed increased patchiness at larger spatial scales, significantly influenced by day/night fluctuations and hydrography. The overall findings highlight the dynamic nature of patch distributions and underscore the strong impact of hydrographic interfaces, whether vertically oriented pycnoclines or horizontally structured hydrographic fronts. These insights into bio-physical linkages deepen our understanding of the mechanisms driving larval survival, prey availability and overall ecosystem dynamics.</p>\n </div>","PeriodicalId":51054,"journal":{"name":"Fisheries Oceanography","volume":"34 2","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fisheries Oceanography","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/fog.12715","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

Abstract

The distribution of fish larvae and other planktonic organisms is highly heterogenous and influenced by a complex interplay of physical, behavioural and ecological processes operating across different scales. Information on patterns and scale of resulting patchiness in plankton distributions is pivotal for understanding the bio-physical linkages, trophodynamics and ecological strategies in the marine pelagic environment. In this study, we examine the distribution and degree of patchiness of four fish larvae species and their copepod prey, placing specific emphasis on the scale of patterns in both horizontal and vertical dimensions. Our sampling effort encompassed a 120 km long transect of stations covering a frontal area in the southern North Sea, employing depth-stratified net sampling at varying station distances. Our results show distinct distributional patterns and migratory behaviours among different taxa of both larvae and their copepod prey, yet some commonalities were apparent. Across all species, we observed increased patchiness at larger spatial scales, significantly influenced by day/night fluctuations and hydrography. The overall findings highlight the dynamic nature of patch distributions and underscore the strong impact of hydrographic interfaces, whether vertically oriented pycnoclines or horizontally structured hydrographic fronts. These insights into bio-physical linkages deepen our understanding of the mechanisms driving larval survival, prey availability and overall ecosystem dynamics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Fisheries Oceanography
Fisheries Oceanography 农林科学-海洋学
CiteScore
5.00
自引率
7.70%
发文量
50
审稿时长
>18 weeks
期刊介绍: The international journal of the Japanese Society for Fisheries Oceanography, Fisheries Oceanography is designed to present a forum for the exchange of information amongst fisheries scientists worldwide. Fisheries Oceanography: presents original research articles relating the production and dynamics of fish populations to the marine environment examines entire food chains - not just single species identifies mechanisms controlling abundance explores factors affecting the recruitment and abundance of fish species and all higher marine tropic levels
期刊最新文献
Issue Information Issue Information Multiscale Spatial and Temporal Patterns of Distribution of Marine Fish Larvae—Patchiness and Predator–Prey Overlap Ecological Niche Interaction Between Co-Existing Antarctic Krill (Euphausia superba) and the Pelagic Tunicate (Salpa thompsoni) in the Northern Antarctic Peninsula Beyond the Boundaries: Poleward Range Expansion of the Atlantic Chub Mackerel Scomber colias in SW Atlantic Ocean
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1