{"title":"RMOWOA: A Revamped Multi-Objective Whale Optimization Algorithm for Maximizing the Lifetime of a Network in Wireless Sensor Networks","authors":"Bhanu Dwivedi, Bachu Dushmanta Kumar Patro","doi":"10.1007/s10766-024-00775-y","DOIUrl":null,"url":null,"abstract":"<p>Wireless sensor networks (WSNs) consist of sensor nodes that detect, process, and transmit various types of information to a base station unit. The development of energy-efficient routing protocols is a crucial challenge in WSNs. This study proposes a novel algorithm called RMOWOA, i.e., <i>Revamped Multi-Objective Whale Optimization Algorithm</i>, which utilizes concentric circles with different radii to partition the network. The circles are divided into eight equal sectors, and sections are formed at the intersections of sectors and layers. Each section contains a small number of nodes, and an agent is selected based on specific criteria. The nodes within each section transmit their detected information to the corresponding agent or cluster head. This process is repeated until the base station receives the data. The selection of agents is based on a WOA-based approach, known for enhancing the network's lifetime. The selected agent aggregates the data, performs redundant residue number-based error detection and rectification, and forwards the information to the lower segment's agent within that sector. The proposed RMOWOA algorithm is evaluated through simulation analysis and compared with established benchmark cluster head selection schemes such as SFA- Cluster Head Selection, FCGWO-Cluster Head Selection, and ABC-Cluster Head Selection. The experimental results of the RMOWOA algorithm demonstrate reduced energy consumption and extended network lifespan by effectively balancing the ratio of alive and dead nodes in WSNs.</p>","PeriodicalId":14313,"journal":{"name":"International Journal of Parallel Programming","volume":"23 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Parallel Programming","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10766-024-00775-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Wireless sensor networks (WSNs) consist of sensor nodes that detect, process, and transmit various types of information to a base station unit. The development of energy-efficient routing protocols is a crucial challenge in WSNs. This study proposes a novel algorithm called RMOWOA, i.e., Revamped Multi-Objective Whale Optimization Algorithm, which utilizes concentric circles with different radii to partition the network. The circles are divided into eight equal sectors, and sections are formed at the intersections of sectors and layers. Each section contains a small number of nodes, and an agent is selected based on specific criteria. The nodes within each section transmit their detected information to the corresponding agent or cluster head. This process is repeated until the base station receives the data. The selection of agents is based on a WOA-based approach, known for enhancing the network's lifetime. The selected agent aggregates the data, performs redundant residue number-based error detection and rectification, and forwards the information to the lower segment's agent within that sector. The proposed RMOWOA algorithm is evaluated through simulation analysis and compared with established benchmark cluster head selection schemes such as SFA- Cluster Head Selection, FCGWO-Cluster Head Selection, and ABC-Cluster Head Selection. The experimental results of the RMOWOA algorithm demonstrate reduced energy consumption and extended network lifespan by effectively balancing the ratio of alive and dead nodes in WSNs.
期刊介绍:
International Journal of Parallel Programming is a forum for the publication of peer-reviewed, high-quality original papers in the computer and information sciences, focusing specifically on programming aspects of parallel computing systems. Such systems are characterized by the coexistence over time of multiple coordinated activities. The journal publishes both original research and survey papers. Fields of interest include: linguistic foundations, conceptual frameworks, high-level languages, evaluation methods, implementation techniques, programming support systems, pragmatic considerations, architectural characteristics, software engineering aspects, advances in parallel algorithms, performance studies, and application studies.