{"title":"Novel Cu(200)/Ti cathode for the enhancement of N2 selectivity in direct ammonia electrolysis: The controls of Cu cathode facet orientation","authors":"Ming-Han Tsai , Yaju Juang , Chi-Chang Hu , Shih-Hua Chen , Lap-Cuong Hua , Chihpin Huang","doi":"10.1016/j.elecom.2024.107793","DOIUrl":null,"url":null,"abstract":"<div><p>Direct electrochemical ammonia oxidation reaction (AOR) using NiCu-based anodes is effective in removing ammonia from wastewater. However, this type of anode frequently produces undesired byproducts NO<sub>3</sub><sup>−</sup>. Here, we investigated three configurations of novel Cu/Ti cathodes (Cu(1<!--> <!-->1<!--> <!-->1)/Ti, Cu(2<!--> <!-->0<!--> <!-->0)/Ti, Cu(2<!--> <!-->2<!--> <!-->0)/Ti) coupled with Cu/Ni foam (Cu/NF) anode to enhance N<sub>2</sub> selectivity (SN<sub>2</sub>) in a direct ammonia electrolysis cell. Cu(2<!--> <!-->0<!--> <!-->0)/Ti cathode improved SN<sub>2</sub> from 35 % (bare Ti cathode) to 60 % and it achieved 10–15 % higher SN<sub>2</sub> compared to Cu(1<!--> <!-->1<!--> <!-->1)/Ti and Cu(2<!--> <!-->2<!--> <!-->0)/Ti. The improvement of SN<sub>2</sub> on Cu(2<!--> <!-->0<!--> <!-->0) facet was ascribed to the high nitrate electroreduction activity and its conversion to N<sub>2</sub>. In real wastewater, Cu/NF anode-Cu(2<!--> <!-->0<!--> <!-->0)/Ti cathode paired electrolysis system demonstrated its excellent capability of 88 % NH<sub>3</sub> removal with 95 % SN<sub>2</sub>. Our electrolysis system was capable to maintain the residual NH<sub>3</sub>-N and the NO<sub>3</sub>-N below 8 mg L<sup>−1</sup>, meeting effluent discharge standards. Our findings highlighted the importance of the control of Cu cathode facet orientations for an efficient elimination of NO<sub>3</sub><sup>–</sup> and improvement of N<sub>2</sub> production during direct ammonia electrolysis.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"166 ","pages":"Article 107793"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S138824812400136X/pdfft?md5=68cde13eb19ccf745d3d627e9a46acf5&pid=1-s2.0-S138824812400136X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138824812400136X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Direct electrochemical ammonia oxidation reaction (AOR) using NiCu-based anodes is effective in removing ammonia from wastewater. However, this type of anode frequently produces undesired byproducts NO3−. Here, we investigated three configurations of novel Cu/Ti cathodes (Cu(1 1 1)/Ti, Cu(2 0 0)/Ti, Cu(2 2 0)/Ti) coupled with Cu/Ni foam (Cu/NF) anode to enhance N2 selectivity (SN2) in a direct ammonia electrolysis cell. Cu(2 0 0)/Ti cathode improved SN2 from 35 % (bare Ti cathode) to 60 % and it achieved 10–15 % higher SN2 compared to Cu(1 1 1)/Ti and Cu(2 2 0)/Ti. The improvement of SN2 on Cu(2 0 0) facet was ascribed to the high nitrate electroreduction activity and its conversion to N2. In real wastewater, Cu/NF anode-Cu(2 0 0)/Ti cathode paired electrolysis system demonstrated its excellent capability of 88 % NH3 removal with 95 % SN2. Our electrolysis system was capable to maintain the residual NH3-N and the NO3-N below 8 mg L−1, meeting effluent discharge standards. Our findings highlighted the importance of the control of Cu cathode facet orientations for an efficient elimination of NO3– and improvement of N2 production during direct ammonia electrolysis.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.