Felix Ott , Lucas Heublein , David Rügamer , Bernd Bischl , Christopher Mutschler
{"title":"Fusing structure from motion and simulation-augmented pose regression from optical flow for challenging indoor environments","authors":"Felix Ott , Lucas Heublein , David Rügamer , Bernd Bischl , Christopher Mutschler","doi":"10.1016/j.jvcir.2024.104256","DOIUrl":null,"url":null,"abstract":"<div><p>The localization of objects is essential in many applications, such as robotics, virtual and augmented reality, and warehouse logistics. Recent advancements in deep learning have enabled localization using monocular cameras. Traditionally, structure from motion (SfM) techniques predict an object’s absolute position from a point cloud, while absolute pose regression (APR) methods use neural networks to understand the environment semantically. However, both approaches face challenges from environmental factors like motion blur, lighting changes, repetitive patterns, and featureless areas. This study addresses these challenges by incorporating additional information and refining absolute pose estimates with relative pose regression (RPR) methods. RPR also struggles with issues like motion blur. To overcome this, we compute the optical flow between consecutive images using the Lucas–Kanade algorithm and use a small recurrent convolutional network to predict relative poses. Combining absolute and relative poses is difficult due to differences between global and local coordinate systems. Current methods use pose graph optimization (PGO) to align these poses. In this work, we propose recurrent fusion networks to better integrate absolute and relative pose predictions, enhancing the accuracy of absolute pose estimates. We evaluate eight different recurrent units and create a simulation environment to pre-train the APR and RPR networks for improved generalization. Additionally, we record a large dataset of various scenarios in a challenging indoor environment resembling a warehouse with transportation robots. Through hyperparameter searches and experiments, we demonstrate that our recurrent fusion method outperforms PGO in effectiveness.</p></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"103 ","pages":"Article 104256"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1047320324002128/pdfft?md5=f88e7c25e01d5af99626350e7efd4744&pid=1-s2.0-S1047320324002128-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324002128","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The localization of objects is essential in many applications, such as robotics, virtual and augmented reality, and warehouse logistics. Recent advancements in deep learning have enabled localization using monocular cameras. Traditionally, structure from motion (SfM) techniques predict an object’s absolute position from a point cloud, while absolute pose regression (APR) methods use neural networks to understand the environment semantically. However, both approaches face challenges from environmental factors like motion blur, lighting changes, repetitive patterns, and featureless areas. This study addresses these challenges by incorporating additional information and refining absolute pose estimates with relative pose regression (RPR) methods. RPR also struggles with issues like motion blur. To overcome this, we compute the optical flow between consecutive images using the Lucas–Kanade algorithm and use a small recurrent convolutional network to predict relative poses. Combining absolute and relative poses is difficult due to differences between global and local coordinate systems. Current methods use pose graph optimization (PGO) to align these poses. In this work, we propose recurrent fusion networks to better integrate absolute and relative pose predictions, enhancing the accuracy of absolute pose estimates. We evaluate eight different recurrent units and create a simulation environment to pre-train the APR and RPR networks for improved generalization. Additionally, we record a large dataset of various scenarios in a challenging indoor environment resembling a warehouse with transportation robots. Through hyperparameter searches and experiments, we demonstrate that our recurrent fusion method outperforms PGO in effectiveness.
期刊介绍:
The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.