{"title":"Modeling the plasma composition of 67P/C-G at different heliocentric distances","authors":"Sana Ahmed, Vikas Soni","doi":"10.1016/j.icarus.2024.116253","DOIUrl":null,"url":null,"abstract":"<div><p>The <em>Rosetta</em> spacecraft accompanied the comet 67P/C-G for nearly 2 years, collecting valuable data on the neutral and ion composition of the coma. The Rosetta Plasma Consortium (RPC) provided continuous measurements of the in situ plasma density while ROSINA-COPS monitored the neutral composition. In this work, we aim to estimate the composition of the cometary ionosphere at different heliocentric distances of the comet. Läuter et al. (2020) derived the temporal evolution of the volatile sublimation rates for 50 separated time intervals on the orbit of 67P/C-G using the COPS and DFMS data. We use these sublimation rates as inputs in a multifluid chemical-hydrodynamical model for 36 of the time intervals for heliocentric distances <span><math><mrow><mo><</mo><mn>3</mn></mrow></math></span> au. We compare the total ion densities obtained from our models with the local plasma density measured by the RPC instruments. We find that at the location of the spacecraft, our modeled ion densities match with the in situ measured plasma density within factors of <span><math><mrow><mn>1</mn><mo>−</mo><mn>3</mn></mrow></math></span> for many of the time intervals. We obtain the cometocentric distance variation of the ions H<sub>2</sub>O<sup>+</sup> and H<sub>3</sub>O<sup>+</sup> and the ion groups created respectively by the ionization and protonation of neutral species. We see that H<sub>3</sub>O<sup>+</sup> is dominant at the spacecraft location for nearly all the time intervals while ions created due to protonation are dominant at low cometocentric distances for the intervals near perihelion. We also discuss our ion densities in the context of their detection by DFMS.</p></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"422 ","pages":"Article 116253"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103524003130","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Rosetta spacecraft accompanied the comet 67P/C-G for nearly 2 years, collecting valuable data on the neutral and ion composition of the coma. The Rosetta Plasma Consortium (RPC) provided continuous measurements of the in situ plasma density while ROSINA-COPS monitored the neutral composition. In this work, we aim to estimate the composition of the cometary ionosphere at different heliocentric distances of the comet. Läuter et al. (2020) derived the temporal evolution of the volatile sublimation rates for 50 separated time intervals on the orbit of 67P/C-G using the COPS and DFMS data. We use these sublimation rates as inputs in a multifluid chemical-hydrodynamical model for 36 of the time intervals for heliocentric distances au. We compare the total ion densities obtained from our models with the local plasma density measured by the RPC instruments. We find that at the location of the spacecraft, our modeled ion densities match with the in situ measured plasma density within factors of for many of the time intervals. We obtain the cometocentric distance variation of the ions H2O+ and H3O+ and the ion groups created respectively by the ionization and protonation of neutral species. We see that H3O+ is dominant at the spacecraft location for nearly all the time intervals while ions created due to protonation are dominant at low cometocentric distances for the intervals near perihelion. We also discuss our ion densities in the context of their detection by DFMS.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.