Relationships between lobate debris aprons and lineated valley fill on Mars: Evidence for an extensive Amazonian valley glacial landsystem in Mamers Valles
Lukas Wueller , James W. Head , Erica R. Jawin , Thomas Heyer , Harald Hiesinger , Carolyn H. van der Bogert
{"title":"Relationships between lobate debris aprons and lineated valley fill on Mars: Evidence for an extensive Amazonian valley glacial landsystem in Mamers Valles","authors":"Lukas Wueller , James W. Head , Erica R. Jawin , Thomas Heyer , Harald Hiesinger , Carolyn H. van der Bogert","doi":"10.1016/j.icarus.2024.116373","DOIUrl":null,"url":null,"abstract":"<div><div>We examine the characteristics and relationships of Lineated Valley Fill (LVF) and Lobate Debris Aprons (LDA) in Mamers Valles on Mars, a ∼950 km-long fretted valley at the dichotomy boundary. The relationships and distinctions between these glacial landforms are established by detailed analysis of LDA/LVF morphology, topography, and related features are assessed to understand their origin and modification. We document the transition from unconfined LDA to compressed and folded LVF and vice versa, implying that LDA and LVF are intimately related in morphology and mode of origin. Linear LDA dominate Mamers Valles, originating from alcoves, theater-like remnant crater rims, and tributary valleys, while circumferential LDA are arrayed around isolated mesas. Narrow valley areas display the convergence of lobes originating from either side, forming parallel linear ridges that deform into complex folds and become LVF, typically in a local and regional downvalley direction. In contrast, when LVF flows out of a topographically confined area, the material forms a piedmont-like LDA. Thus, local topography is the primary factor in determining whether a deposit will appear LVF-like, LDA-like, or have characteristics of both. Superimposed crater morphology and ground-penetrating radar data suggest the current presence of subsurface ice protected by ∼15–20 m of sublimation lag deposits, with minimal deformation and flow since superposed crater formation. Regional integration leads to the interpretation that the LDA-LVF exposures and ice entry points into the fretted valleys represent the waning stages of a more widespread regional Amazonian plateau glacial landsystem that occupied fretted terrain valleys formed earlier in the Late Noachian-Early Hesperian.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"426 ","pages":"Article 116373"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103524004330","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We examine the characteristics and relationships of Lineated Valley Fill (LVF) and Lobate Debris Aprons (LDA) in Mamers Valles on Mars, a ∼950 km-long fretted valley at the dichotomy boundary. The relationships and distinctions between these glacial landforms are established by detailed analysis of LDA/LVF morphology, topography, and related features are assessed to understand their origin and modification. We document the transition from unconfined LDA to compressed and folded LVF and vice versa, implying that LDA and LVF are intimately related in morphology and mode of origin. Linear LDA dominate Mamers Valles, originating from alcoves, theater-like remnant crater rims, and tributary valleys, while circumferential LDA are arrayed around isolated mesas. Narrow valley areas display the convergence of lobes originating from either side, forming parallel linear ridges that deform into complex folds and become LVF, typically in a local and regional downvalley direction. In contrast, when LVF flows out of a topographically confined area, the material forms a piedmont-like LDA. Thus, local topography is the primary factor in determining whether a deposit will appear LVF-like, LDA-like, or have characteristics of both. Superimposed crater morphology and ground-penetrating radar data suggest the current presence of subsurface ice protected by ∼15–20 m of sublimation lag deposits, with minimal deformation and flow since superposed crater formation. Regional integration leads to the interpretation that the LDA-LVF exposures and ice entry points into the fretted valleys represent the waning stages of a more widespread regional Amazonian plateau glacial landsystem that occupied fretted terrain valleys formed earlier in the Late Noachian-Early Hesperian.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.