CSIDRS – stable isotope data reduction software for the CAMECA LG SIMS

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Geosciences Pub Date : 2024-07-29 DOI:10.1016/j.cageo.2024.105683
Ruby C. Marsden , Laure Martin , Matvei Aleshin , Paul Guagliardo
{"title":"CSIDRS – stable isotope data reduction software for the CAMECA LG SIMS","authors":"Ruby C. Marsden ,&nbsp;Laure Martin ,&nbsp;Matvei Aleshin ,&nbsp;Paul Guagliardo","doi":"10.1016/j.cageo.2024.105683","DOIUrl":null,"url":null,"abstract":"<div><p>Reduction of stable isotope data from the CAMECA LG SIMS is a vital stage in stable isotope analysis. Currently, both visual basic programs and excel spreadsheets, and other in-house programs are used for this data reduction from raw data to final δ values; uncertainty propagations have previously been carried out using the Taylor expansion method. In this paper an open-source program, CSIDRS, which uses Monte Carlo uncertainty propagation, is presented for community use and development. Two example datasets are provided and compared to previous data reduction strategies. Additionally, CSIDRS can be used for quality checking of stable isotope SIMS data.</p></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"192 ","pages":"Article 105683"},"PeriodicalIF":4.2000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0098300424001663/pdfft?md5=4399948c25056847e4a24f879eb7d1c9&pid=1-s2.0-S0098300424001663-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424001663","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Reduction of stable isotope data from the CAMECA LG SIMS is a vital stage in stable isotope analysis. Currently, both visual basic programs and excel spreadsheets, and other in-house programs are used for this data reduction from raw data to final δ values; uncertainty propagations have previously been carried out using the Taylor expansion method. In this paper an open-source program, CSIDRS, which uses Monte Carlo uncertainty propagation, is presented for community use and development. Two example datasets are provided and compared to previous data reduction strategies. Additionally, CSIDRS can be used for quality checking of stable isotope SIMS data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CSIDRS - CAMECA LG SIMS 的稳定同位素数据还原软件
对来自 CAMECA LG SIMS 的稳定同位素数据进行还原是稳定同位素分析的一个重要阶段。目前,从原始数据到最终δ值的数据还原使用了可视化基本程序和excel电子表格以及其他内部程序;不确定性传播以前使用泰勒扩展法进行。本文介绍了一个使用蒙特卡洛不确定性传播的开源程序 CSIDRS,供社区使用和开发。本文提供了两个示例数据集,并与之前的数据缩减策略进行了比较。此外,CSIDRS 还可用于稳定同位素 SIMS 数据的质量检查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
期刊最新文献
Multivariate simulation using a locally varying coregionalization model Automatic variogram calculation and modeling Optimized AI-MPM: Application of PSO for tuning the hyperparameters of SVM and RF algorithms Spectral whitening based seismic data preprocessing technique to improve the quality of surface wave's velocity spectra ReUNet: Efficient deep learning for precise ore segmentation in mineral processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1