ScoreInver: 3D seismic impedance inversion based on scoring mechanism

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Geosciences Pub Date : 2025-02-17 DOI:10.1016/j.cageo.2025.105896
Xinyuan Zhu , Timing Li , Kewen Li , Guangyue Zhou , Ruonan Yin
{"title":"ScoreInver: 3D seismic impedance inversion based on scoring mechanism","authors":"Xinyuan Zhu ,&nbsp;Timing Li ,&nbsp;Kewen Li ,&nbsp;Guangyue Zhou ,&nbsp;Ruonan Yin","doi":"10.1016/j.cageo.2025.105896","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, the introduction of deep learning has significantly advanced the field of seismic impedance inversion (SII). However, existing methods generally rely heavily on large volumes of expensive well logs, limiting their broader applicability, particularly in scenarios beyond mature or synthetic data. To reduce the dependency on well logs in deep learning-based SII research, this paper proposes a 3D data-driven SII approach based on the pseudo-labeling strategy in semi-supervised learning, termed the ScoreInver framework. The core of the ScoreInver framework lies in the design and training of a Scorer, which can precisely select high-quality pseudo-labels from seismic data, thereby enhancing data utilization and extracting geological information while minimizing the need for extensive well logs. This framework is highly versatile, capable of seamless integration into various semi-supervised learning architectures. Experimental results demonstrate that, when using only 9 well logs as training samples on synthetic data, the semi-supervised learning architectures based on the ScoreInver framework significantly outperforms traditional supervised learning methods, with improvements of 3.3% in Structural Similarity Index (SSIM) and a reduction of 29.1% in Mean Squared Error (MSE). Moreover, tests on field data reveal that the application of the ScoreInver framework yields more robust and reliable results, further validating its effectiveness and practicality in real-world exploration environments.</div></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"198 ","pages":"Article 105896"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300425000469","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the introduction of deep learning has significantly advanced the field of seismic impedance inversion (SII). However, existing methods generally rely heavily on large volumes of expensive well logs, limiting their broader applicability, particularly in scenarios beyond mature or synthetic data. To reduce the dependency on well logs in deep learning-based SII research, this paper proposes a 3D data-driven SII approach based on the pseudo-labeling strategy in semi-supervised learning, termed the ScoreInver framework. The core of the ScoreInver framework lies in the design and training of a Scorer, which can precisely select high-quality pseudo-labels from seismic data, thereby enhancing data utilization and extracting geological information while minimizing the need for extensive well logs. This framework is highly versatile, capable of seamless integration into various semi-supervised learning architectures. Experimental results demonstrate that, when using only 9 well logs as training samples on synthetic data, the semi-supervised learning architectures based on the ScoreInver framework significantly outperforms traditional supervised learning methods, with improvements of 3.3% in Structural Similarity Index (SSIM) and a reduction of 29.1% in Mean Squared Error (MSE). Moreover, tests on field data reveal that the application of the ScoreInver framework yields more robust and reliable results, further validating its effectiveness and practicality in real-world exploration environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
期刊最新文献
Editorial Board ScoreInver: 3D seismic impedance inversion based on scoring mechanism Hybrid Newton method for the acceleration of well event handling in the simulation of CO2 storage using supervised learning Linear filter theory for the forward Laplace transform and its use in calculating 1D EM responses Deep learning contribution to the automatic picking of surface-wave dispersion for the characterization of railway earthworks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1