Modeling on the Desulfurization of the Molten Steel During RH Process

Yu Sun, Wei Chen, Lifeng Zhang
{"title":"Modeling on the Desulfurization of the Molten Steel During RH Process","authors":"Yu Sun, Wei Chen, Lifeng Zhang","doi":"10.1007/s11663-024-03217-9","DOIUrl":null,"url":null,"abstract":"<p>The present study integrated the multiphase flow of molten steel, desulfurizer dispersion, and desulfurization kinetics to explore the impact of injection amount, injection speed, and lance position on desulfurizer injection desulfurization. This investigation employed a coupled <i>k</i>-<i>ε</i> model, Volume of Fraction (VOF) model, Discrete Phase Model (DPM), user-defined scalar equation (UDS), and unreacted core desulfurization kinetic model. The sulfur content measured in the actual desulfurization process was utilized to validate the mathematical model. Most of the finer powder particles with a diameter of 3 mm tended to stay at the steel surface in the vacuum chamber, with only a fraction being carried by the steel flow into the ladle and then rising to the steel surface. As the increasing of the total desulfurizer amount, the average sulfur content in the molten steel initially increased, but then remained unchanged. However, reducing the total desulfurizer amount from 1200 to 400 kg decreased desulfurization efficiency by 13 pct while the reduction in sulfur content per unit weight of desulfurizer at 400 kg was 2.5 times greater than that achieved at 1200 kg. An increase in the injection speed of desulfurizer resulted in a decrease in average sulfur content, while reducing the injection speed from 200 to 100 kg/min decreased desulfurization efficiency by 19.66 pct. Increasing the position of the desulfurizer injection lance elevated the average sulfur content in the molten steel. Lowering the high lance position of 3.2 m to the low lance position of 2.0 m increased the desulfurization efficiency at the endpoint by 7.45 pct. Additionally, the highest average desulfurization rate increased from 0.0477 to 0.0542 ppm/s. The relationship between the sulfur content in the molten steel and the injection amount, injection speed, and injection lance position can be described by the equation <span>\\({\\text{ln}}\\left( {\\left[ {{\\text{pctS}}} \\right]/{{\\left[ {{\\text{pctS}}} \\right]}_0}} \\right) = 1.841 \\times {10^{ - 6}}\\cdot{m_{{\\text{de}}}}^{0.2}\\cdot{I^{1.5}}\\cdot{H^{ - 1.2}}t\\)</span> This equation holds significant practical relevance for powder injection desulfurization during the RH refining process.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11663-024-03217-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present study integrated the multiphase flow of molten steel, desulfurizer dispersion, and desulfurization kinetics to explore the impact of injection amount, injection speed, and lance position on desulfurizer injection desulfurization. This investigation employed a coupled k-ε model, Volume of Fraction (VOF) model, Discrete Phase Model (DPM), user-defined scalar equation (UDS), and unreacted core desulfurization kinetic model. The sulfur content measured in the actual desulfurization process was utilized to validate the mathematical model. Most of the finer powder particles with a diameter of 3 mm tended to stay at the steel surface in the vacuum chamber, with only a fraction being carried by the steel flow into the ladle and then rising to the steel surface. As the increasing of the total desulfurizer amount, the average sulfur content in the molten steel initially increased, but then remained unchanged. However, reducing the total desulfurizer amount from 1200 to 400 kg decreased desulfurization efficiency by 13 pct while the reduction in sulfur content per unit weight of desulfurizer at 400 kg was 2.5 times greater than that achieved at 1200 kg. An increase in the injection speed of desulfurizer resulted in a decrease in average sulfur content, while reducing the injection speed from 200 to 100 kg/min decreased desulfurization efficiency by 19.66 pct. Increasing the position of the desulfurizer injection lance elevated the average sulfur content in the molten steel. Lowering the high lance position of 3.2 m to the low lance position of 2.0 m increased the desulfurization efficiency at the endpoint by 7.45 pct. Additionally, the highest average desulfurization rate increased from 0.0477 to 0.0542 ppm/s. The relationship between the sulfur content in the molten steel and the injection amount, injection speed, and injection lance position can be described by the equation \({\text{ln}}\left( {\left[ {{\text{pctS}}} \right]/{{\left[ {{\text{pctS}}} \right]}_0}} \right) = 1.841 \times {10^{ - 6}}\cdot{m_{{\text{de}}}}^{0.2}\cdot{I^{1.5}}\cdot{H^{ - 1.2}}t\) This equation holds significant practical relevance for powder injection desulfurization during the RH refining process.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钢水在 RH 过程中的脱硫模型
本研究综合考虑了钢水多相流、脱硫剂分散和脱硫动力学等因素,探讨了喷射量、喷射速度和喷枪位置对脱硫剂喷射脱硫的影响。这项研究采用了 k-ε 耦合模型、馏分体积模型 (VOF)、离散相模型 (DPM)、用户定义标量方程 (UDS) 和未反应核心脱硫动力学模型。在实际脱硫过程中测得的硫含量被用来验证数学模型。大部分直径为 3 毫米的较细粉末颗粒倾向于停留在真空室中的钢表面,只有一小部分被钢流带入钢包,然后上升到钢表面。随着脱硫剂总量的增加,钢水中的平均硫含量最初有所增加,但随后保持不变。然而,将脱硫剂总量从 1200 kg 减少到 400 kg 会使脱硫效率降低 13%,而 400 kg 脱硫剂单位重量的硫含量降幅是 1200 kg 的 2.5 倍。提高脱硫剂的喷射速度可降低平均硫含量,而将喷射速度从 200 千克/分钟降至 100 千克/分钟可使脱硫效率降低 19.66 个百分点。提高脱硫剂喷枪的位置可提高钢水中的平均硫含量。将高喷枪位置(3.2 米)降低到低喷枪位置(2.0 米)可将终点的脱硫效率提高 7.45 个百分点。此外,最高平均脱硫率从 0.0477 ppm/s 提高到 0.0542 ppm/s。钢水中的硫含量与喷射量、喷射速度和喷枪位置之间的关系可以用等式来描述 \({\text{ln}}\left( {\left[ {{text{pctS}}} \right]/{{\left[ {{text{pctS}}} \right]}_0}}) = 1.8/ {\left[ {{text{pctS}}} \right]/{{\left[ {{text{pctS}}} \right]}_0} }\right) = 1.841 times {10^{ - 6}}\cdot{m_{{text{de}}}}^{0.2}\cdot{I^{1.5}}\cdot{H^{ - 1.2}}t}\)该方程对于在 RH 精炼过程中进行粉末喷射脱硫具有重要的实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synergistic Effect of Graphite and Fly Ash on the Microstructural Evolution and Tribological Characteristics of Fe-Cu-Based Wind Turbine-Sintered Brake Pad Materials Production of Low-Oxygen Ti Powder by Magnesiothermic Reduction of TiO2 in MgCl2–KCl–CeCl3 Molten Salt Coupled CFD-DEM with Flow and Heat Transfer to Investigate the Melting and Motion of Alloy Manufacturing High Strength-Toughness High-Nitrogen Stainless Bearing Steel 30Cr15Mo1VN by Pressurized Duplex Process In Situ Observation of Aggregation of Calcium Aluminate Inclusions at Steel/Ar Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1