Explaining a probabilistic prediction on the simplex with Shapley compositions

Paul-Gauthier Noé, Miquel Perelló-Nieto, Jean-François Bonastre, Peter Flach
{"title":"Explaining a probabilistic prediction on the simplex with Shapley compositions","authors":"Paul-Gauthier Noé, Miquel Perelló-Nieto, Jean-François Bonastre, Peter Flach","doi":"arxiv-2408.01382","DOIUrl":null,"url":null,"abstract":"Originating in game theory, Shapley values are widely used for explaining a\nmachine learning model's prediction by quantifying the contribution of each\nfeature's value to the prediction. This requires a scalar prediction as in\nbinary classification, whereas a multiclass probabilistic prediction is a\ndiscrete probability distribution, living on a multidimensional simplex. In\nsuch a multiclass setting the Shapley values are typically computed separately\non each class in a one-vs-rest manner, ignoring the compositional nature of the\noutput distribution. In this paper, we introduce Shapley compositions as a\nwell-founded way to properly explain a multiclass probabilistic prediction,\nusing the Aitchison geometry from compositional data analysis. We prove that\nthe Shapley composition is the unique quantity satisfying linearity, symmetry\nand efficiency on the Aitchison simplex, extending the corresponding axiomatic\nproperties of the standard Shapley value. We demonstrate this proper multiclass\ntreatment in a range of scenarios.","PeriodicalId":501316,"journal":{"name":"arXiv - CS - Computer Science and Game Theory","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Science and Game Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Originating in game theory, Shapley values are widely used for explaining a machine learning model's prediction by quantifying the contribution of each feature's value to the prediction. This requires a scalar prediction as in binary classification, whereas a multiclass probabilistic prediction is a discrete probability distribution, living on a multidimensional simplex. In such a multiclass setting the Shapley values are typically computed separately on each class in a one-vs-rest manner, ignoring the compositional nature of the output distribution. In this paper, we introduce Shapley compositions as a well-founded way to properly explain a multiclass probabilistic prediction, using the Aitchison geometry from compositional data analysis. We prove that the Shapley composition is the unique quantity satisfying linearity, symmetry and efficiency on the Aitchison simplex, extending the corresponding axiomatic properties of the standard Shapley value. We demonstrate this proper multiclass treatment in a range of scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用夏普利合成解释单纯形上的概率预测
夏普利值起源于博弈论,通过量化每个特征值对预测的贡献,被广泛用于解释机器学习模型的预测。这需要二元分类的标量预测,而多分类概率预测则是离散的概率分布,存在于多维单纯形上。在这种多类别设置中,夏普利值通常是以 "一比一 "的方式分别计算每个类别,忽略了输出分布的组成性质。在本文中,我们引入了 Shapley 组合,作为一种有理有据的方法,利用组合数据分析中的艾奇逊几何来正确解释多类概率预测。我们证明 Shapley 组合是艾奇逊单纯形上唯一满足线性、对称和效率的量,扩展了标准 Shapley 值的相应公理属性。我们在一系列场景中证明了这种适当的多数学处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MALADY: Multiclass Active Learning with Auction Dynamics on Graphs Mechanism Design for Extending the Accessibility of Facilities Common revenue allocation in DMUs with two stages based on DEA cross-efficiency and cooperative game The common revenue allocation based on modified Shapley value and DEA cross-efficiency On Robustness to $k$-wise Independence of Optimal Bayesian Mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1