A Lower Bound for Local Search Proportional Approval Voting

Sonja Kraiczy, Edith Elkind
{"title":"A Lower Bound for Local Search Proportional Approval Voting","authors":"Sonja Kraiczy, Edith Elkind","doi":"arxiv-2408.02300","DOIUrl":null,"url":null,"abstract":"Selecting $k$ out of $m$ items based on the preferences of $n$ heterogeneous\nagents is a widely studied problem in algorithmic game theory. If agents have\napproval preferences over individual items and harmonic utility functions over\nbundles -- an agent receives $\\sum_{j=1}^t\\frac{1}{j}$ utility if $t$ of her\napproved items are selected -- then welfare optimisation is captured by a\nvoting rule known as Proportional Approval Voting (PAV). PAV also satisfies\ndemanding fairness axioms. However, finding a winning set of items under PAV is\nNP-hard. In search of a tractable method with strong fairness guarantees, a\nbounded local search version of PAV was proposed by Aziz et al. It proceeds by\nstarting with an arbitrary size-$k$ set $W$ and, at each step, checking if\nthere is a pair of candidates $a\\in W$, $b\\not\\in W$ such that swapping $a$ and\n$b$ increases the total welfare by at least $\\varepsilon$; if yes, it performs\nthe swap. Aziz et al.~show that setting $\\varepsilon=\\frac{n}{k^2}$ ensures\nboth the desired fairness guarantees and polynomial running time. However, they\nleave it open whether the algorithm converges in polynomial time if\n$\\varepsilon$ is very small (in particular, if we do not stop until there are\nno welfare-improving swaps). We resolve this open question, by showing that if\n$\\varepsilon$ can be arbitrarily small, the running time of this algorithm may\nbe super-polynomial. Specifically, we prove a lower bound of~$\\Omega(k^{\\log\nk})$ if improvements are chosen lexicographically. To complement our lower\nbound, we provide an empirical comparison of two variants of local search --\nbetter-response and best-response -- on several real-life data sets and a\nvariety of synthetic data sets. Our experiments indicate that, empirically,\nbetter response exhibits faster running time than best response.","PeriodicalId":501316,"journal":{"name":"arXiv - CS - Computer Science and Game Theory","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Science and Game Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Selecting $k$ out of $m$ items based on the preferences of $n$ heterogeneous agents is a widely studied problem in algorithmic game theory. If agents have approval preferences over individual items and harmonic utility functions over bundles -- an agent receives $\sum_{j=1}^t\frac{1}{j}$ utility if $t$ of her approved items are selected -- then welfare optimisation is captured by a voting rule known as Proportional Approval Voting (PAV). PAV also satisfies demanding fairness axioms. However, finding a winning set of items under PAV is NP-hard. In search of a tractable method with strong fairness guarantees, a bounded local search version of PAV was proposed by Aziz et al. It proceeds by starting with an arbitrary size-$k$ set $W$ and, at each step, checking if there is a pair of candidates $a\in W$, $b\not\in W$ such that swapping $a$ and $b$ increases the total welfare by at least $\varepsilon$; if yes, it performs the swap. Aziz et al.~show that setting $\varepsilon=\frac{n}{k^2}$ ensures both the desired fairness guarantees and polynomial running time. However, they leave it open whether the algorithm converges in polynomial time if $\varepsilon$ is very small (in particular, if we do not stop until there are no welfare-improving swaps). We resolve this open question, by showing that if $\varepsilon$ can be arbitrarily small, the running time of this algorithm may be super-polynomial. Specifically, we prove a lower bound of~$\Omega(k^{\log k})$ if improvements are chosen lexicographically. To complement our lower bound, we provide an empirical comparison of two variants of local search -- better-response and best-response -- on several real-life data sets and a variety of synthetic data sets. Our experiments indicate that, empirically, better response exhibits faster running time than best response.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
本地搜索比例赞成票的下限
从 $m$ 项目中根据 $n$ 异质代理的偏好选择 $k$ 是算法博弈论中广泛研究的问题。如果代理对单个项目具有批准偏好,并且在捆绑上具有谐波效用函数--如果选择了$t$他批准的项目,代理就会获得$\sum_{j=1}^t\frac{1}{j}$效用--那么福利优化就可以通过称为比例批准投票(PAV)的投票规则来实现。PAV 也满足苛刻的公平公理。然而,在 PAV 下找到一组获胜的项目是一件非常困难的事情。为了寻找一种具有强大公平性保证的简单方法,Aziz 等人提出了 PAV 的有源局部搜索版本。该版本从一个任意大小为 $k$ 的集合 $W$ 开始,每一步都要检查是否有一对候选项 $a\in W$,$b\not\in W$,使得交换 $a$ 和 $b$ 至少能使总福利增加 $\varepsilon$;如果有,则执行交换。Aziz 等人的研究表明,设置 $\varepsilon=\frac{n}{k^2}$ 既能保证所需的公平性,又能保证多项式运行时间。然而,如果$\varepsilon$ 非常小(特别是,如果我们在没有改善福利的交换之前不停止),算法是否会在多项式时间内收敛,他们还没有给出答案。我们通过证明如果$\varepsilon$ 可以任意小,那么这个算法的运行时间可能是超多项式的,从而解决了这个悬而未决的问题。具体来说,如果按词典选择改进,我们证明了~$\Omega(k^{/logk})$的下限。为了补充我们的下限,我们在多个真实数据集和多种合成数据集上对本地搜索的两种变体--更好响应和最佳响应--进行了实证比较。我们的实验表明,根据经验,更好的响应比最佳响应的运行时间更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MALADY: Multiclass Active Learning with Auction Dynamics on Graphs Mechanism Design for Extending the Accessibility of Facilities Common revenue allocation in DMUs with two stages based on DEA cross-efficiency and cooperative game The common revenue allocation based on modified Shapley value and DEA cross-efficiency On Robustness to $k$-wise Independence of Optimal Bayesian Mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1