KAN we improve on HEP classification tasks? Kolmogorov-Arnold Networks applied to an LHC physics example

Johannes Erdmann, Florian Mausolf, Jan Lukas Späh
{"title":"KAN we improve on HEP classification tasks? Kolmogorov-Arnold Networks applied to an LHC physics example","authors":"Johannes Erdmann, Florian Mausolf, Jan Lukas Späh","doi":"arxiv-2408.02743","DOIUrl":null,"url":null,"abstract":"Recently, Kolmogorov-Arnold Networks (KANs) have been proposed as an\nalternative to multilayer perceptrons, suggesting advantages in performance and\ninterpretability. We study a typical binary event classification task in\nhigh-energy physics including high-level features and comment on the\nperformance and interpretability of KANs in this context. We find that the\nlearned activation functions of a one-layer KAN resemble the log-likelihood\nratio of the input features. In deeper KANs, the activations in the first KAN\nlayer differ from those in the one-layer KAN, which indicates that the deeper\nKANs learn more complex representations of the data. We study KANs with\ndifferent depths and widths and we compare them to multilayer perceptrons in\nterms of performance and number of trainable parameters. For the chosen\nclassification task, we do not find that KANs are more parameter efficient.\nHowever, small KANs may offer advantages in terms of interpretability that come\nat the cost of only a moderate loss in performance.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"112 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, Kolmogorov-Arnold Networks (KANs) have been proposed as an alternative to multilayer perceptrons, suggesting advantages in performance and interpretability. We study a typical binary event classification task in high-energy physics including high-level features and comment on the performance and interpretability of KANs in this context. We find that the learned activation functions of a one-layer KAN resemble the log-likelihood ratio of the input features. In deeper KANs, the activations in the first KAN layer differ from those in the one-layer KAN, which indicates that the deeper KANs learn more complex representations of the data. We study KANs with different depths and widths and we compare them to multilayer perceptrons in terms of performance and number of trainable parameters. For the chosen classification task, we do not find that KANs are more parameter efficient. However, small KANs may offer advantages in terms of interpretability that come at the cost of only a moderate loss in performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
我们能否改进 HEP 分类任务?柯尔莫哥洛夫-阿诺德网络在大型强子对撞机物理实例中的应用
最近,有人提出用 Kolmogorov-Arnold 网络(KANs)替代多层感知器,这表明 KANs 在性能和可解释性方面具有优势。我们研究了高能物理中一个典型的二元事件分类任务,其中包括高层次特征,并对 KANs 在这种情况下的性能和可解释性进行了评论。我们发现,单层 KAN 学习到的激活函数类似于输入特征的对数似然比。在深度 KAN 中,第一层 KAN 的激活函数与单层 KAN 的激活函数不同,这表明深度 KAN 学习到了更复杂的数据表示。我们研究了不同深度和宽度的 KAN,并将它们与多层感知器在性能和可训练参数数量方面进行了比较。对于所选的分类任务,我们并没有发现 KANs 在参数效率上更高。不过,小型 KANs 在可解释性方面可能具有优势,但其代价是性能上的适度损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PASS: An Asynchronous Probabilistic Processor for Next Generation Intelligence Astrometric Binary Classification Via Artificial Neural Networks XENONnT Analysis: Signal Reconstruction, Calibration and Event Selection Converting sWeights to Probabilities with Density Ratios Challenges and perspectives in recurrence analyses of event time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1