Jing Liang , Xudong Sui , Caitong Yue , Mingyuan Yu , Guang Li , Mengmeng Li
{"title":"Multimodal multiobjective differential evolution algorithm based on enhanced decision space search","authors":"Jing Liang , Xudong Sui , Caitong Yue , Mingyuan Yu , Guang Li , Mengmeng Li","doi":"10.1016/j.swevo.2024.101682","DOIUrl":null,"url":null,"abstract":"<div><p>Multimodal multiobjective optimization problems (MMOPs) have attracted extensive research interest. These problems are characterized by the presence of multiple equivalent optimal solutions in the decision space, all corresponding to the same optimal values in the objective space. However, effectively finding a high-quality and evenly distributed Pareto sets (PSs) remains a challenge for researchers. This paper introduces a multimodal multiobjective differential evolution algorithm based on enhanced decision space search (MMODE_EDSS). By adopting two types of strategies to enhance the decision space search capability, the algorithm generates multiple high-quality non-dominated solutions. In the early stages of evolution, neighborhood information is used to enhance search capabilities, while in the later stages, data interpolation methods following clustering are employed for searching. Moreover, to improve the overall population distribution, an environmental selection mechanism based on dual-space crowding distance is adopted. The effectiveness of the proposed algorithm, MMODE_EDSS, is evaluated by comparing it with eight state-of-the-art multimodal multiobjective evolutionary algorithms (MMOEAs). Experimental results confirm the significant advantages of MMODE_EDSS.</p></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"90 ","pages":"Article 101682"},"PeriodicalIF":8.2000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224002207","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Multimodal multiobjective optimization problems (MMOPs) have attracted extensive research interest. These problems are characterized by the presence of multiple equivalent optimal solutions in the decision space, all corresponding to the same optimal values in the objective space. However, effectively finding a high-quality and evenly distributed Pareto sets (PSs) remains a challenge for researchers. This paper introduces a multimodal multiobjective differential evolution algorithm based on enhanced decision space search (MMODE_EDSS). By adopting two types of strategies to enhance the decision space search capability, the algorithm generates multiple high-quality non-dominated solutions. In the early stages of evolution, neighborhood information is used to enhance search capabilities, while in the later stages, data interpolation methods following clustering are employed for searching. Moreover, to improve the overall population distribution, an environmental selection mechanism based on dual-space crowding distance is adopted. The effectiveness of the proposed algorithm, MMODE_EDSS, is evaluated by comparing it with eight state-of-the-art multimodal multiobjective evolutionary algorithms (MMOEAs). Experimental results confirm the significant advantages of MMODE_EDSS.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.