Multi-objective evolutionary multi-tasking band selection algorithm for hyperspectral image classification

IF 8.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Swarm and Evolutionary Computation Pub Date : 2024-07-29 DOI:10.1016/j.swevo.2024.101665
Qijun Wang , Yong Liu , Ke Xu , Yanni Dong , Fan Cheng , Ye Tian , Bo Du , Xingyi Zhang
{"title":"Multi-objective evolutionary multi-tasking band selection algorithm for hyperspectral image classification","authors":"Qijun Wang ,&nbsp;Yong Liu ,&nbsp;Ke Xu ,&nbsp;Yanni Dong ,&nbsp;Fan Cheng ,&nbsp;Ye Tian ,&nbsp;Bo Du ,&nbsp;Xingyi Zhang","doi":"10.1016/j.swevo.2024.101665","DOIUrl":null,"url":null,"abstract":"<div><p>Hyperspectral images (HSI) contain a great number of bands, which enable better characterization of features. However, the huge dimension and information volume brought by the abundant bands may give rise to a negative influence on the efficiency of subsequent processing on hyperspectral images. Band selection (BS) is a commonly adopted to reduce the dimension of HSIs. Different from the previous work, in this paper, hyperspectral band selection problem is formulated as a multi-objective optimization problem, where the band distribution uniformity among the selected bands and inter-class separation distance from a few labeled samples are optimized simultaneously. To fully exploit the relation between the band subsets with different sizes, we construct a multi-objective evolutionary multi-tasking algorithm for hyperspectral band selection (namely MEMT-HBS) to achieve the selected band subsets for all the selected band sizes in one run. To implement MEMT-HBS, the intra-task pairwise learning based solution generation strategy is suggested to evolve the population for each task to achieve high-quality offspring whose selected band size is restricted to a fixed scope. The inter-task band coverage based knowledge transferring strategy is utilized to choose useful individuals from adjacent tasks to further enhance the performance of current task. Compared with the state-of-the-art semi-supervised and unsupervised BS algorithms, empirical results on different standard hyperspectral datasets show that our proposed MEMT-HBS can determine the superior band subset which has a higher image classification accuracy over the comparison algorithms.</p></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"90 ","pages":"Article 101665"},"PeriodicalIF":8.2000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224002037","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperspectral images (HSI) contain a great number of bands, which enable better characterization of features. However, the huge dimension and information volume brought by the abundant bands may give rise to a negative influence on the efficiency of subsequent processing on hyperspectral images. Band selection (BS) is a commonly adopted to reduce the dimension of HSIs. Different from the previous work, in this paper, hyperspectral band selection problem is formulated as a multi-objective optimization problem, where the band distribution uniformity among the selected bands and inter-class separation distance from a few labeled samples are optimized simultaneously. To fully exploit the relation between the band subsets with different sizes, we construct a multi-objective evolutionary multi-tasking algorithm for hyperspectral band selection (namely MEMT-HBS) to achieve the selected band subsets for all the selected band sizes in one run. To implement MEMT-HBS, the intra-task pairwise learning based solution generation strategy is suggested to evolve the population for each task to achieve high-quality offspring whose selected band size is restricted to a fixed scope. The inter-task band coverage based knowledge transferring strategy is utilized to choose useful individuals from adjacent tasks to further enhance the performance of current task. Compared with the state-of-the-art semi-supervised and unsupervised BS algorithms, empirical results on different standard hyperspectral datasets show that our proposed MEMT-HBS can determine the superior band subset which has a higher image classification accuracy over the comparison algorithms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高光谱图像分类的多目标进化多任务波段选择算法
高光谱图像(HSI)包含大量波段,可以更好地描述特征。然而,丰富的波段所带来的巨大维度和信息量可能会对高光谱图像后续处理的效率产生负面影响。波段选择(BS)是降低高光谱图像维度的常用方法。与以往的研究不同,本文将高光谱波段选择问题表述为一个多目标优化问题,即同时优化所选波段之间的波段分布均匀性和少数标记样本的类间分离距离。为了充分利用不同大小的波段子集之间的关系,我们构建了一种用于高光谱波段选择的多目标进化多任务算法(即 MEMT-HBS),以在一次运行中实现所有选定波段大小的选定波段子集。为实现 MEMT-HBS,建议采用基于任务内配对学习的解决方案生成策略,对每个任务的种群进行进化,以获得高质量的后代,其所选波段大小限制在固定范围内。利用基于任务间波段覆盖的知识转移策略,从相邻任务中选择有用的个体,进一步提高当前任务的性能。与最先进的半监督和无监督 BS 算法相比,在不同标准高光谱数据集上的实证结果表明,我们提出的 MEMT-HBS 可以确定优越的波段子集,与比较算法相比,它具有更高的图像分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Swarm and Evolutionary Computation
Swarm and Evolutionary Computation COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
16.00
自引率
12.00%
发文量
169
期刊介绍: Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.
期刊最新文献
Complexity, interpretability and robustness of GP-based feature engineering in remote sensing A Self-adaptive two stage iterative greedy algorithm based job scales for energy-efficient distributed permutation flowshop scheduling problem Two-stage bidirectional coevolutionary algorithm for constrained multi-objective optimization A survey on vehicle–drone cooperative delivery operations optimization: Models, methods, and future research directions Bayesian network structure learning based on discrete artificial jellyfish search: Leveraging scoring and graphical properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1