Simulation-based optimization of barrier and spacer layers in InAlN/GaN HEMTs for improved 2DEG density

IF 2.7 Q2 PHYSICS, CONDENSED MATTER Micro and Nanostructures Pub Date : 2024-08-08 DOI:10.1016/j.micrna.2024.207950
Abdelmalek Douara , Abdelaziz Rabehi , Mawloud Guermoui , Rania Daha , Imad Eddine Tibermacine
{"title":"Simulation-based optimization of barrier and spacer layers in InAlN/GaN HEMTs for improved 2DEG density","authors":"Abdelmalek Douara ,&nbsp;Abdelaziz Rabehi ,&nbsp;Mawloud Guermoui ,&nbsp;Rania Daha ,&nbsp;Imad Eddine Tibermacine","doi":"10.1016/j.micrna.2024.207950","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we utilize Nextnano device simulation software to systematically investigate the dependence of 2-DEG (two-dimensional electron gas) density on the barrier and spacer Layers in InAlN/GaN high electron mobility transistors (HEMTs). By simulating a range of barrier thicknesses, In mole fractions, and spacer layer thicknesses, we reveal the intricate ways in which these parameters influence device performance. Our simulations demonstrate that precise control of the InAlN barrier thickness and In mole fraction, along with the AlN spacer thickness, is crucial for optimizing 2DEG density and, consequently, the overall electrical properties of the HEMTs. Notably, our results highlight that an InAlN barrier thickness below 12 nm, coupled with an optimized In mole fraction and a finely tuned AlN spacer thickness close to 1 nm, significantly enhances 2DEG density without compromising mobility. These insights provide a detailed understanding of the material and structural dependencies critical for the design and development of high-performance InAlN/GaN HEMTs. Our study includes detailed calculations of the device's I–V characteristics. Notably, the highest peak output current is observed at a 1 nm AlN spacer thickness, reaching 0.91 A/mm. Our findings highlight a noteworthy agreement between the results derived from our computational simulations and experimental measurements.</p></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"195 ","pages":"Article 207950"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012324001997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we utilize Nextnano device simulation software to systematically investigate the dependence of 2-DEG (two-dimensional electron gas) density on the barrier and spacer Layers in InAlN/GaN high electron mobility transistors (HEMTs). By simulating a range of barrier thicknesses, In mole fractions, and spacer layer thicknesses, we reveal the intricate ways in which these parameters influence device performance. Our simulations demonstrate that precise control of the InAlN barrier thickness and In mole fraction, along with the AlN spacer thickness, is crucial for optimizing 2DEG density and, consequently, the overall electrical properties of the HEMTs. Notably, our results highlight that an InAlN barrier thickness below 12 nm, coupled with an optimized In mole fraction and a finely tuned AlN spacer thickness close to 1 nm, significantly enhances 2DEG density without compromising mobility. These insights provide a detailed understanding of the material and structural dependencies critical for the design and development of high-performance InAlN/GaN HEMTs. Our study includes detailed calculations of the device's I–V characteristics. Notably, the highest peak output current is observed at a 1 nm AlN spacer thickness, reaching 0.91 A/mm. Our findings highlight a noteworthy agreement between the results derived from our computational simulations and experimental measurements.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于仿真优化 InAlN/GaN HEMT 中的阻挡层和间隔层以提高 2DEG 密度
在这项研究中,我们利用 Nextnano 器件仿真软件系统地研究了 2-DEG(二维电子气体)密度对 InAlN/GaN 高电子迁移率晶体管 (HEMT) 中的势垒层和间隔层的依赖性。通过模拟一系列的势垒厚度、铟摩尔分数和间隔层厚度,我们揭示了这些参数影响器件性能的复杂方式。我们的模拟结果表明,精确控制 InAlN 势垒厚度和 In 摩尔分数以及 AlN 间隔层厚度,对于优化 2DEG 密度以及 HEMT 的整体电气性能至关重要。值得注意的是,我们的研究结果表明,低于 12 nm 的 InAlN 势垒厚度,加上优化的 In 摩尔分数和接近 1 nm 的 AlN 间隔层厚度,可以在不影响迁移率的情况下显著提高 2DEG 密度。这些见解为设计和开发高性能 InAlN/GaN HEMT 提供了对材料和结构相关性的详细了解。我们的研究包括器件 I-V 特性的详细计算。值得注意的是,在 1 nm AlN 间隔层厚度时,输出电流峰值最高,达到 0.91 A/mm。我们的研究结果凸显了计算模拟和实验测量结果之间值得注意的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
期刊最新文献
Corrigendum to “Graphene-based MEMS devices for gas sensing applications: A review” [Micro Nanostruct. 195 (2024) 207954] Research on RF performance of GaN HEMT with graded Al composition AlGaN back-barrier Corrigendum to “Evaluation of sensitivity in a vertically misaligned double-gate electrolyte-insulator-semiconductor extended source tunnel FET as pH sensor” [Micro Nanostruct. 196 (2024) 208005] The impact of barrier modulation on carriers transport in GaN quantum well infrared detectors Interference enhanced SPR-mediated visible-light responsive photocatalysis of periodically ordered ZnO nanorod arrays decorated with Au nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1