Robust Approximate Characterization of Single-Cell Heterogeneity in Microbial Growth

Richard D. Paul, Johannes Seiffarth, Hanno Scharr, Katharina Nöh
{"title":"Robust Approximate Characterization of Single-Cell Heterogeneity in Microbial Growth","authors":"Richard D. Paul, Johannes Seiffarth, Hanno Scharr, Katharina Nöh","doi":"arxiv-2408.04501","DOIUrl":null,"url":null,"abstract":"Live-cell microscopy allows to go beyond measuring average features of\ncellular populations to observe, quantify and explain biological heterogeneity.\nDeep Learning-based instance segmentation and cell tracking form the gold\nstandard analysis tools to process the microscopy data collected, but tracking\nin particular suffers severely from low temporal resolution. In this work, we\nshow that approximating cell cycle time distributions in microbial colonies of\nC. glutamicum is possible without performing tracking, even at low temporal\nresolution. To this end, we infer the parameters of a stochastic multi-stage\nbirth process model using the Bayesian Synthetic Likelihood method at varying\ntemporal resolutions by subsampling microscopy sequences, for which ground\ntruth tracking is available. Our results indicate, that the proposed approach\nyields high quality approximations even at very low temporal resolution, where\ntracking fails to yield reasonable results.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Live-cell microscopy allows to go beyond measuring average features of cellular populations to observe, quantify and explain biological heterogeneity. Deep Learning-based instance segmentation and cell tracking form the gold standard analysis tools to process the microscopy data collected, but tracking in particular suffers severely from low temporal resolution. In this work, we show that approximating cell cycle time distributions in microbial colonies of C. glutamicum is possible without performing tracking, even at low temporal resolution. To this end, we infer the parameters of a stochastic multi-stage birth process model using the Bayesian Synthetic Likelihood method at varying temporal resolutions by subsampling microscopy sequences, for which ground truth tracking is available. Our results indicate, that the proposed approach yields high quality approximations even at very low temporal resolution, where tracking fails to yield reasonable results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微生物生长中单细胞异质性的稳健近似表征
基于深度学习的实例分割和细胞追踪是处理收集到的显微镜数据的黄金标准分析工具,但追踪尤其受到低时间分辨率的严重影响。在这项工作中,我们展示了即使在低时间分辨率下,也可以在不进行跟踪的情况下近似计算谷氨酸杆菌微生物菌落中的细胞周期时间分布。为此,我们使用贝叶斯合成似然法,在不同的时间分辨率下,通过对显微镜序列进行子采样,推断出一个随机多阶段繁殖过程模型的参数。我们的研究结果表明,即使在时间分辨率非常低的情况下,所提出的方法也能得到高质量的近似值,而在这种情况下,跟踪无法得到合理的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities Automating proton PBS treatment planning for head and neck cancers using policy gradient-based deep reinforcement learning A computational framework for optimal and Model Predictive Control of stochastic gene regulatory networks Active learning for energy-based antibody optimization and enhanced screening Comorbid anxiety symptoms predict lower odds of improvement in depression symptoms during smartphone-delivered psychotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1