Efficient Approximate Methods for Design of Experiments for Copolymer Engineering

Swagatam Mukhopadhyay
{"title":"Efficient Approximate Methods for Design of Experiments for Copolymer Engineering","authors":"Swagatam Mukhopadhyay","doi":"arxiv-2408.02166","DOIUrl":null,"url":null,"abstract":"We develop a set of algorithms to solve a broad class of Design of Experiment\n(DoE) problems efficiently. Specifically, we consider problems in which one\nmust choose a subset of polymers to test in experiments such that the learning\nof the polymeric design rules is optimal. This subset must be selected from a\nlarger set of polymers permissible under arbitrary experimental design\nconstraints. We demonstrate the performance of our algorithms by solving\nseveral pragmatic nucleic acid therapeutics engineering scenarios, where\nlimitations in synthesis of chemically diverse nucleic acids or feasibility of\nmeasurements in experimental setups appear as constraints. Our approach focuses\non identifying optimal experimental designs from a given set of experiments,\nwhich is in contrast to traditional, generative DoE methods like BIBD. Finally,\nwe discuss how these algorithms are broadly applicable to well-established\noptimal DoE criteria like D-optimality.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a set of algorithms to solve a broad class of Design of Experiment (DoE) problems efficiently. Specifically, we consider problems in which one must choose a subset of polymers to test in experiments such that the learning of the polymeric design rules is optimal. This subset must be selected from a larger set of polymers permissible under arbitrary experimental design constraints. We demonstrate the performance of our algorithms by solving several pragmatic nucleic acid therapeutics engineering scenarios, where limitations in synthesis of chemically diverse nucleic acids or feasibility of measurements in experimental setups appear as constraints. Our approach focuses on identifying optimal experimental designs from a given set of experiments, which is in contrast to traditional, generative DoE methods like BIBD. Finally, we discuss how these algorithms are broadly applicable to well-established optimal DoE criteria like D-optimality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
共聚物工程实验设计的高效近似方法
我们开发了一套算法,可以高效地解决一大类实验设计(DoE)问题。具体来说,我们考虑的问题是,我们必须选择一个聚合物子集进行实验测试,从而使聚合物设计规则的学习达到最优。这个子集必须从任意实验设计约束条件下允许使用的更大聚合物集合中选出。我们通过求解各种实用的核酸治疗工程方案来证明我们算法的性能,在这些方案中,化学多样性核酸合成的限制或实验装置测量的可行性都是制约因素。我们的方法侧重于从一组给定的实验中确定最佳实验设计,这与传统的生成式 DoE 方法(如 BIBD)截然不同。最后,我们讨论了这些算法如何广泛适用于成熟的最优 DoE 标准(如 D-最优性)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities Automating proton PBS treatment planning for head and neck cancers using policy gradient-based deep reinforcement learning A computational framework for optimal and Model Predictive Control of stochastic gene regulatory networks Active learning for energy-based antibody optimization and enhanced screening Comorbid anxiety symptoms predict lower odds of improvement in depression symptoms during smartphone-delivered psychotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1