Tailings storage facilities, failures and disaster risk

Karen A. Hudson-Edwards, Deanna Kemp, Luis Alberto Torres-Cruz, Mark G. Macklin, Paul A. Brewer, John R. Owen, Daniel M. Franks, Eva Marquis, Christopher J. Thomas
{"title":"Tailings storage facilities, failures and disaster risk","authors":"Karen A. Hudson-Edwards, Deanna Kemp, Luis Alberto Torres-Cruz, Mark G. Macklin, Paul A. Brewer, John R. Owen, Daniel M. Franks, Eva Marquis, Christopher J. Thomas","doi":"10.1038/s43017-024-00576-4","DOIUrl":null,"url":null,"abstract":"Mining generates 13 billion tonnes per year of potentially toxic wet slurry waste, called tailings, commonly deposited in tailings storage facilities (TSF). Since 1915, 257 TSF failures have occurred, releasing a total of ~250 million m3 of tailings, destroying areas up to ~5,000 km2, killing an estimated 2,650 people and impacting ~317,000 people through displacement, property damage, and risks to livelihoods and health. In this Review, we provide an interdisciplinary approach to understanding the causes, effects and response to TSF failures, applying a disaster risk reduction framework. TSF failures can occur owing to earthquakes, overtopping, weak foundations and liquefaction, among other mechanisms. The severities and volumes of TSF failures have increased since the year 2000, owing to increasing mine waste generation from the exploitation of larger, lower-grade deposits. Despite the increasingly severe impacts, the mining industry has been hesitant to use the term ‘disaster’ to analyse TSF failure, presumably to avoid liability. TSF failures should be considered as disasters when they cause severe disruption to the functioning of ecological and social systems. Future research should build on attempts to link tailings facility locations to situated risk factors by improving spatial and time series analysis, reducing reliance on corporate disclosures, and increasing the visibility of priority locations and patterns of concern. Mine tailings are voluminous and often toxic wastes, whose management is a global safety and sustainability challenge. This Review summarizes the major tailings storage facility disasters and impacts, emphasizing the urgent need for risk reduction approaches for management and policy.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 9","pages":"612-630"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Earth & Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43017-024-00576-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mining generates 13 billion tonnes per year of potentially toxic wet slurry waste, called tailings, commonly deposited in tailings storage facilities (TSF). Since 1915, 257 TSF failures have occurred, releasing a total of ~250 million m3 of tailings, destroying areas up to ~5,000 km2, killing an estimated 2,650 people and impacting ~317,000 people through displacement, property damage, and risks to livelihoods and health. In this Review, we provide an interdisciplinary approach to understanding the causes, effects and response to TSF failures, applying a disaster risk reduction framework. TSF failures can occur owing to earthquakes, overtopping, weak foundations and liquefaction, among other mechanisms. The severities and volumes of TSF failures have increased since the year 2000, owing to increasing mine waste generation from the exploitation of larger, lower-grade deposits. Despite the increasingly severe impacts, the mining industry has been hesitant to use the term ‘disaster’ to analyse TSF failure, presumably to avoid liability. TSF failures should be considered as disasters when they cause severe disruption to the functioning of ecological and social systems. Future research should build on attempts to link tailings facility locations to situated risk factors by improving spatial and time series analysis, reducing reliance on corporate disclosures, and increasing the visibility of priority locations and patterns of concern. Mine tailings are voluminous and often toxic wastes, whose management is a global safety and sustainability challenge. This Review summarizes the major tailings storage facility disasters and impacts, emphasizing the urgent need for risk reduction approaches for management and policy.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
尾矿储存设施、故障和灾害风险
采矿业每年产生 130 亿吨可能有毒的湿泥浆废物,称为尾矿,通常堆放在尾矿库 (TSF)。自 1915 年以来,共发生了 257 起尾矿库溃坝事故,释放出总计约 2.5 亿立方米的尾矿,毁坏面积达约 5,000 平方公里,造成约 2,650 人死亡,约 31.7 万人流离失所、财产损失以及生计和健康风险。在本《综述》中,我们采用跨学科方法,在减少灾害风险的框架下,了解台风暴发的原因、影响和应对措施。除其他机制外,地震、倾覆、地基薄弱和液化都可能导致临时安全设施失效。自 2000 年以来,由于开采规模较大、品位较低的矿藏所产生的矿山废料越来越多,导致临时采空区坍塌的严重程度和数量不断增加。尽管影响越来越严重,但采矿业一直不愿使用 "灾难 "一词来分析 TSF 故障,可能是为了避免承担责任。当 TSF 故障对生态和社会系统的运行造成严重破坏时,就应将其视为灾难。未来的研究应通过改进空间和时间序列分析、减少对企业披露信息的依赖以及提高重点关注地点和模式的可见度,在尝试将尾矿设施位置与所处风险因素联系起来的基础上更进一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planetary Boundaries guide humanity’s future on Earth Seasonal CO2 amplitude in northern high latitudes Principles for satellite monitoring of vegetation carbon uptake Electric cooking as a clean and just energy solution Focusing on architectural beauty to reduce construction waste
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1