An Organic–Inorganic Superlattice with Nanocrystal-Amorphous Composite Nanolayers for Ultrahigh Thermoelectric Performance

Indirajith Palani, Duyen Thi Nguyen, Jongchan Kim, Quang Khanh Nguyen, Long Van Nguyen, Da Som Song, Jong Sun Lim, Chang Gyon Kim, Kyeongjae Cho, Myung Mo Sung
{"title":"An Organic–Inorganic Superlattice with Nanocrystal-Amorphous Composite Nanolayers for Ultrahigh Thermoelectric Performance","authors":"Indirajith Palani, Duyen Thi Nguyen, Jongchan Kim, Quang Khanh Nguyen, Long Van Nguyen, Da Som Song, Jong Sun Lim, Chang Gyon Kim, Kyeongjae Cho, Myung Mo Sung","doi":"10.1002/sstr.202400201","DOIUrl":null,"url":null,"abstract":"Thermoelectric materials play a crucial role in converting heat into electricity, offering significant potential for applications in waste heat recovery and cooling. Herein, an innovative approach that combines an organic–inorganic hybrid superlattice structure with nanocrystal-amorphous composite nanolayers is introduced. The nanocrystal-amorphous composite enhances the Seebeck coefficient resulting in a notable twofold improvement in the power factor. The superlattice, alternating self-assembled organic monolayers and inorganic nanolayers, effectively reduces lattice thermal conductivity by creating multiple interfaces that scatter phonons effectively. The integration of the nanocrystal-amorphous composite nanolayers into the superlattice provides a dual advantage, simultaneously boosting the power factor and suppressing thermal conductivity. This synergistic effect leads to exceptional thermoelectric performance in the 4-mercaptophenol/Sb<sub>2</sub>Te<sub>3</sub> superlattice, with achieved figure of merit (ZT) values of 3.48 at 300 K and reaching a peak ZT value exceeding 4.0 at 400 K while surpassing 2.5 over the temperature range from 300 to 500 K. These results suggest that this innovative approach paves the way for the development of highly efficient thermoelectric materials, propelling efforts toward more energy-efficient and environmentally friendly solutions.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"195 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sstr.202400201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Thermoelectric materials play a crucial role in converting heat into electricity, offering significant potential for applications in waste heat recovery and cooling. Herein, an innovative approach that combines an organic–inorganic hybrid superlattice structure with nanocrystal-amorphous composite nanolayers is introduced. The nanocrystal-amorphous composite enhances the Seebeck coefficient resulting in a notable twofold improvement in the power factor. The superlattice, alternating self-assembled organic monolayers and inorganic nanolayers, effectively reduces lattice thermal conductivity by creating multiple interfaces that scatter phonons effectively. The integration of the nanocrystal-amorphous composite nanolayers into the superlattice provides a dual advantage, simultaneously boosting the power factor and suppressing thermal conductivity. This synergistic effect leads to exceptional thermoelectric performance in the 4-mercaptophenol/Sb2Te3 superlattice, with achieved figure of merit (ZT) values of 3.48 at 300 K and reaching a peak ZT value exceeding 4.0 at 400 K while surpassing 2.5 over the temperature range from 300 to 500 K. These results suggest that this innovative approach paves the way for the development of highly efficient thermoelectric materials, propelling efforts toward more energy-efficient and environmentally friendly solutions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有纳米晶-非晶复合纳米层的有机-无机超晶格实现超高热电性能
热电材料在将热能转化为电能方面发挥着至关重要的作用,为废热回收和冷却领域的应用提供了巨大潜力。本文介绍了一种将有机-无机混合超晶格结构与纳米晶体-非晶态复合纳米层相结合的创新方法。纳米晶体-非晶态复合材料提高了塞贝克系数,使功率因数显著提高了两倍。超晶格是自组装有机单层和无机纳米层的交替层,通过形成能有效散射声子的多个界面,有效降低了晶格热导率。将纳米晶体-非晶态复合纳米层集成到超晶格中具有双重优势,既能提高功率因数,又能抑制热导率。这种协同效应使 4-巯基酚/Sb2Te3 超晶格具有卓越的热电性能,在 300 K 时达到 3.48 的优越性(ZT)值,在 400 K 时达到超过 4.0 的 ZT 峰值,而在 300 至 500 K 的温度范围内超过 2.5。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
期刊最新文献
Mesoporous Silica Nanoparticle Grafted Polypropylene Membrane toward Long-Term Efficient Oxygenation Thermal Methanol Synthesis from CO2 Using Cu/ZnO Catalysts: Insights from First-Principles Calculations Modulating Alkyl Groups in Copolymer to Control Ion Transport in Electrolyte-Gated Organic Transistors for Neuromorphic Computing Monodispersed Iron Selenide Nanoparticles United with Carbon Nanotubes for Highly Reversible Zinc–Air Batteries Clustered VCoCOx Nanosheets Anchored on MXene–Ti3C2@NF as a Superior Bifunctional Electrocatalyst for Alkaline Water Splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1