Online Learning of Temporal Association Rule on Dynamic Multivariate Time Series Data

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Knowledge and Data Engineering Pub Date : 2024-08-05 DOI:10.1109/TKDE.2024.3438259
Guoliang He;Dawei Jin;Lifang Dai;Xin Xin;Zhiwen Yu;C. L. Philip Chen
{"title":"Online Learning of Temporal Association Rule on Dynamic Multivariate Time Series Data","authors":"Guoliang He;Dawei Jin;Lifang Dai;Xin Xin;Zhiwen Yu;C. L. Philip Chen","doi":"10.1109/TKDE.2024.3438259","DOIUrl":null,"url":null,"abstract":"Recently, rule-based classification on multivariate time series (MTS) data has gained lots of attention, which could improve the interpretability of classification. However, state-of-the-art approaches suffer from three major issues. 1) few existing studies consider temporal relations among features in a rule, which could not adequately express the essential characteristics of MTS data. 2) due to the concept drift and time warping of MTS data, traditional methods could not mine essential characteristics of MTS data. 3) existing online learning algorithms could not effectively update shapelet-based temporal association rules of MTS data due to its temporal relationships among features of different variables. To handle these issues, we propose an online learning method for temporal association rule on dynamically collected MTS data (OTARL). First, a new type of rule named temporal association rule is defined and mined to represent temporal relationships among features in a rule. Second, an online learning mechanism with a probability correlation-based evaluation criterion is proposed to realize the online learning of temporal association rules on dynamically collected MTS data. Finally, an ensemble classification approach based on maximum-likelihood estimation is advanced to further enhance the classification performance. We conduct experiments on ten real-world datasets to verify the effectiveness and efficiency of our approach.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"36 12","pages":"8954-8966"},"PeriodicalIF":8.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10623290/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, rule-based classification on multivariate time series (MTS) data has gained lots of attention, which could improve the interpretability of classification. However, state-of-the-art approaches suffer from three major issues. 1) few existing studies consider temporal relations among features in a rule, which could not adequately express the essential characteristics of MTS data. 2) due to the concept drift and time warping of MTS data, traditional methods could not mine essential characteristics of MTS data. 3) existing online learning algorithms could not effectively update shapelet-based temporal association rules of MTS data due to its temporal relationships among features of different variables. To handle these issues, we propose an online learning method for temporal association rule on dynamically collected MTS data (OTARL). First, a new type of rule named temporal association rule is defined and mined to represent temporal relationships among features in a rule. Second, an online learning mechanism with a probability correlation-based evaluation criterion is proposed to realize the online learning of temporal association rules on dynamically collected MTS data. Finally, an ensemble classification approach based on maximum-likelihood estimation is advanced to further enhance the classification performance. We conduct experiments on ten real-world datasets to verify the effectiveness and efficiency of our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态多变量时间序列数据时序关联规则的在线学习
最近,基于规则的多变量时间序列(MTS)数据分类受到了广泛关注,它可以提高分类的可解释性。然而,最先进的方法存在三个主要问题。1)现有研究很少考虑规则中特征之间的时间关系,这无法充分表达 MTS 数据的基本特征。2)由于 MTS 数据的概念漂移和时间扭曲,传统方法无法挖掘 MTS 数据的本质特征。3)由于 MTS 数据中不同变量特征之间的时间关系,现有的在线学习算法无法有效更新基于 shapelet 的 MTS 数据时间关联规则。为了解决这些问题,我们提出了一种动态收集 MTS 数据时空关联规则在线学习方法(OTARL)。首先,我们定义并挖掘了一种名为 "时间关联规则 "的新型规则,用于在规则中表示特征之间的时间关系。其次,提出了一种基于概率相关性评价标准的在线学习机制,以实现在动态收集的 MTS 数据上在线学习时空关联规则。最后,我们提出了一种基于最大似然估计的集合分类方法,以进一步提高分类性能。我们在十个真实世界数据集上进行了实验,以验证我们方法的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
期刊最新文献
SE Factual Knowledge in Frozen Giant Code Model: A Study on FQN and Its Retrieval Online Dynamic Hybrid Broad Learning System for Real-Time Safety Assessment of Dynamic Systems Iterative Soft Prompt-Tuning for Unsupervised Domain Adaptation A Derivative Topic Dissemination Model Based on Representation Learning and Topic Relevance L-ASCRA: A Linearithmic Time Approximate Spectral Clustering Algorithm Using Topologically-Preserved Representatives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1